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Solutions to Review Problems for Exam 2

1. Let T : ℝ2 → ℝ2 denote the linear transformation which maps the parallelogram
spanned by

v1 =

(
2
−1

)
and v2 =

(
2
1

)
to the parallelogram spanned by

w1 =

(
−1

1

)
and w2 =

(
1
1

)
.

(a) Give the matrix representation, MT , relative to the standard basis in ℝ2.

Solution: Assume that T : ℝ2 → ℝ2 is linear and that T (v1) =
w1 and T (v2) = w2. Writing v1 and v2 in terms of the standard
basis in ℝ2, we have that

v1 = 2e1 − e2

and
v2 = 2e1 + e2.

Thus, applying T and the linearity of T we then have that

2T (e1)− T (e2) = w1 (1)

and
2T (e1) + T (e2) = w2. (2)

We can solve (1) and (2) simultaneously to obtain that

T (e1) =

(
0

1/2

)
and

(
1
0

)
.

It then follows that the matrix representation, MT , or T , relative
to the standard basis in ℝ2 is

MT = [ T (e1) T (e2) ] =

(
0 1

1/2 0

)
.

□

(b) Compute det(T ). Does T preserve orientation?
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Solution: Compute

det(T ) = det(MT ) = −1

2
.

Since, det(T ) < 0, T reverses orientation. □

(c) Show that T is invertible and compute the inverse of T .

Solution: Since det(T ) ∕= 0, T is invertible, and the matrix
representation for the inverse of T is given by

M−1
T =

1

det(T )

(
0 −1

−1/2 0

)
=

(
0 2
1 0

)
.

Consequently, the inverse of T is given by

T−1
(
x
y

)
=

(
0 2
1 0

)(
x
y

)
=

(
2y
x

)

for all

(
x
y

)
∈ ℝ2. □

(d) Does T have real eigenvalues? If so, compute them and their corresponding
eigenspaces.

Solution: The eigenvalues of T are scalars, �, for which the
system of equations

(MT − �I)v = 0 (3)

has nontrivial solutions. The system in (3) has nontrivial solutions
if and only if the matrix

MT − �I =

(
−� 1
1/2 −�

)
is singular; this, in turn, is the case if and only if

det(MT − �I) = 0,

or

�2 − 1

2
= 0.

Thus, �1 = − 1√
2

and �2 =
1√
2

are eigenvalues of T .
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To find the eigespace corresponding to �1 we solve the homogenous
system in (3) for � = �1. We can do this by performing row
operations of the augmented matrix(

1√
2

1 ∣ 0
1
2

1√
2
∣ 0

)
,

which is row–equivalent to the matrix(
1
√

2 ∣ 0
0 0 ∣ 0

)
.

Thus, the system in (3) for � = �1 is equivalent to the homoge-
neous equation

x1 +
√

2 x2 = 0,

which has solutions (
x1
x2

)
= t

( √
2
−1

)
.

Thus, the eigenspace of T associated with �1 = − 1√
2

is

ET (�1) = span

{( √
2
−1

)}
.

Similarly, we can compute the eigenspace of T associated with

�2 =
1√
2

to be

ET (�2) = span

{( √
2
1

)}
.

□

2. Define T : ℝ3 → ℝ3 by

T (v) = Av for all v ∈ ℝ3,

where A is the 3× 3 matrix given by

A =

⎛⎝ 1 2 1
6 −1 0
−1 −2 −1

⎞⎠ .

Find all eigenvalues and corresponding eigenspaces for the transformation T .
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Solution: First, observe that the third row of A is a multiple of
the first and, therefore, A is singular. This implies that � = 0 is an
eigenvalue of A. to find the corresponding eigenspace, we solve the
homogeneous system

Av = 0 (4)

for v ∈ ℝ3. In order to do this, we reduce the augmented matrix⎛⎝ 1 2 1 ∣ 0
6 −1 0 ∣ 0
−1 −2 −1 ∣ 0

⎞⎠
to ⎛⎝ 1 0 1/13 ∣ 0

0 1 6/13 ∣ 0
0 0 0 ∣ 0

⎞⎠ .

Thus the system in (4) is equivalent to{
x1 + 1

13
x3 = 0

x2 + 6
13
x3 = 0,

which can be solved to yield the solutions⎛⎝ x1
x2
x3

⎞⎠ = t

⎛⎝ 1
6
−13

⎞⎠ .

Thus, the eigenspace of A associated with �1 = 0 is

EA(0) = span

⎧⎨⎩
⎛⎝ 1

6
−13

⎞⎠⎫⎬⎭ .

Next, we see if A has other eigenvalues. In order to do this, we look
for values of � for which the homogeneous system

(A− �I)v = 0 (5)

has nontrivial solutions. The system in (5) has nontrivial solutions if
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and only if det(A− �I) = 0, where

det(A− �I) =

∣∣∣∣∣∣
1− � 2 1

6 −1− � 0
−1 −2 −1− �

∣∣∣∣∣∣
= (1− �)

∣∣∣∣−1− � 0
−2 −1− �

∣∣∣∣− 2

∣∣∣∣ 6 0
−1 −1− �

∣∣∣∣+

∣∣∣∣ 6 −1− �
−1 −2

∣∣∣∣
= (1− �)(�+ 1)2 + 12(�+ 1)− 12− (�+ 1)

= −�(�+ 4)(�− 3).

It then follows that �1 = 0, �2 = −4 and �3 = 3 are eigenvalues of A.

We have already compute EA(�1). To compute the eigenspace corre-
sponding to �2, we solve the homogeneous system (5) with � = �2 =
−4. We do this by reducing the augmented matrix⎛⎝ 5 2 1 ∣ 0

6 3 0 ∣ 0
−1 −2 3 ∣ 0

⎞⎠
to ⎛⎝ 1 0 1 ∣ 0

0 1 −2 ∣ 0
0 0 0 ∣ 0

⎞⎠
Thus the system in (5) with � = −4 is equivalent to{

x1 + x3 = 0
x2 − 2x3 = 0,

which can be solved to yield the solutions⎛⎝ x1
x2
x3

⎞⎠ = t

⎛⎝ 1
−2
−1

⎞⎠ .

Thus, the eigenspace of A associated with �2 = −4 is

EA(−4) = span

⎧⎨⎩
⎛⎝ 1
−2
−1

⎞⎠⎫⎬⎭ .
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Similar calculations show that

EA(3) = span

⎧⎨⎩
⎛⎝ 2

3
−2

⎞⎠⎫⎬⎭ .

□

3. Find a value of d for which the matrix

A =

(
1 −2
3 d

)
is not invertible.

Show that, for that value of d, � = 0 is an eigenvalue of A. Give the eigenspace
corresponding to 0. What is the dimension of EA(0)?

Solution: The matrix A fails to be invertible when det(A) = 0. This
occurs when d = −6. For this value of d, the matrix A becomes

A =

(
1 −2
3 −6

)
and observe that its second column is a multiple of the first. There-
fore, the columns of A are linearly dependent; hence, the system

Av = 0 (6)

has nontrivial solutions and therefore � = 0 is an eigenvalue of A. To
find the corresponding eigenspace, observe that the system in (6) is
equivalent to the equation

x1 − 2x2 = 0,

which has solutions (
x1
x2

)
= t

(
2
1

)
.

Thus, the eigenspace of A associated with � = 0 is

EA(0) = span

{(
2
1

)}
.

Therefore, dim(EA(0)) = 1. □
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4. Use the fact that det(AB) = det(A) det(B) for all A,B ∈ M(n, n) to compute
det(A−1), provided that A is invertible.

Proof: Assume that A is invertible with inverse A−1. Then,

A−1A = I,

where I is the n× n identity matrix. Taking determinants on both sides of the
equation yields that

det(A−1A) = 1,

from which we get that
det(A−1) det(A) = 1.

This, since det(A) ∕= 0 because A is invertible, we get that

det(A−1) =
1

det(A)
.

5. Let A and B be n× n matrices. Show that if AB is invertible, then so is A.

Proof: Suppose that AB is invertible. Then, there exists an n × n matrix, C,
such that

(AB)C = I,

where I is the n× n identity matrix. Thus, by associativity of matrix multipli-
cation,

A(BC) = I,

which shows that A has a right–inverse and is therefore invertible.

6. Let A be a 3 × 3 matrix satisfying A3 − 6A2 − 2A + 12I = O, where I is the
3× 3 identity matrix and O is the 3× 3 zero matrix.

(a) Prove that A is invertible and given a formula for computing its inverse in
terms of I, A and A2.
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Solution: We can solve the equation A3 − 6A2 − 2A + 12I = O
for 12I and then divide by 12 to get that

A

(
1

6
I +

1

2
A− 1

12
A2

)
= I,

which shows that A has a right–inverse and is therefore invertible
with

A−1 =
1

6
I +

1

2
A− 1

12
A2.

□

(b) Prove that if � is an eigenvalue of A, then �3− 6�2− 2�+ 12 = 0. Deduce
therefore that � is one of 6,

√
2 or −

√
2.

Proof: Let � be an eigenvalue of A. Then, there exists a nonzero vector,
v, in ℝ3 such that

Av = �v.

Multiplying on both sides by A we then get that

A2v = �Av = �(�v) = �2v.

Multiplying the last equation by A we then get that

A3v = �3v.

Thus, applying A3 − 6A2 − 2A+ 12I = O to to v we get that

(A3 − 6A2 − 2A+ 12I)v = Ov,

which, by the distributive property, implies that

A3v − 6A2v − 2Av + 12v = 0.

Thus,
�3v − 6�2v − 2�v + 12v = 0,

or
(�3 − 6�2 − 2�+ 12)v = 0,

from which we get that

�3 − 6�2 − 2�+ 12 = 0,

since v is nonzero.

Observe that �3− 6�2− 2�+ 12 factors into (�− 6)(�+
√

2)(�−
√

2).
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7. Let T : ℝ2 → ℝ2 be given by T (v) = Av for all v ∈ ℝ2, where A is a 2 × 2
matrix. Let area(P (v1, v2)) denote the are of the parallelogram determined by
the vectors v1 and v2. Prove that

areaP ((T (v1), T (v2))) = ∣ det(A)∣ ⋅ area(P (v1, v2)).

Solution: Observe that the matrix [ T (v1) T (v2) ] = [ Av1 Av2 ]
can be written as

[ T (v1) T (v2) ] = A[ v1 v2 ],

by the definition of the matrix product. Thus, taking the determinant
on both sides we have

det([ T (v1) T (v2) ]) = det(A[ v1 v2 ])

= det(A) det([ v1 v2 ]).

Thus, taking the absolute value on both sides,

area(P (T (v1), T (v2))) = ∣ det(A)∣ ⋅ area(P (v1, v2)).

□

8. Let u denote a unit vector in ℝn and define f : ℝn → ℝn by

f(v) = ⟨u, v⟩u for all v ∈ ℝn,

where ⟨⋅, ⋅⟩ denotes the Euclidean inner product in ℝn.

(a) Verify that f is linear.

Solution: For v, w ∈ ℝn, compute

f(v + w) = ⟨u, v + w⟩u
= (⟨u, v⟩+ ⟨u,w⟩)u
= ⟨u, v⟩u+ ⟨u,w⟩u
= f(v) + f(w).

Similarly, for a scalar c and v ∈ ℝn,

f(cv) = ⟨u, cv⟩u
= c⟨u, v⟩u
= cf(v).

□
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(b) Give the image, ℐf , and null space, Nf , of f , and compute dim(ℐf ).

Solution: The image of f is the set

ℐf = {w ∈ ℝn ∣ w = f(v) for some v ∈ ℝn}.

We claim that ℐf = span{u}. To see why this is so, first observe
that f(u) = ⟨u, u⟩u = ∥u∥2u = u, since u is a unit vector. Thus,

f(u) = u. (7)

Let w ∈ span{u}; then w = cu, for some scalar c. Now, by the
linearity of f ,

w = cu = cf(u) = f(cu),

where we have used (7). We have therefor shown that

w ∈ span{u} ⇒ w ∈ ℐf ;

that is,
span{u} ⊆ ℐf . (8)

Next, suppose that w ∈ ℐf ; then, w = f(v) for some v ∈ ℝn, so
that

w = ⟨u, v⟩u ∈ span{u}.
Thus,

ℐf ⊆ span{u}. (9)

Combining (8) and (9) yields that

ℐf = span{u}.

It then follows that
dim(ℐf ) = 1. (10)

The null space of f is the set

Nf = {v ∈ ℝn ∣ f(v) = 0}.

Thus,
v ∈ Nf iff ⟨u, v⟩u = 0

iff ⟨u, v⟩ = 0,

since u ∕= 0. It then follows that

Nf = {v ∈ ℝn ∣ ⟨u, v⟩ = 0};

that is, Nf is the space of vectors which are orthogonal to u. □
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(c) The Dimension Theorem for a linear transformations, T : ℝn → ℝm, states
that

dim(NT ) + dim(ℐT ) = n.

Use the Dimension Theorem to compute dim(Nf ).

Solution: Using the dimension theorem and (10) we get that

dim(Nf ) + 1 = n,

which implies that
dim(Nf ) = n− 1.

□


