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Solutions to Review Problems for Final Exam

1. Let W be a subspace of R™. Prove that span(W) = W.

Proof: Assume that W is a subspace of R". Then, since span(WW) is the smallest
subspace of R™ that contains W, it follows that

W C span(WV) (1)

and
span(W) C W. (2)

The inclusion in (2) follows from the fact that W C W and the assumption that
W is a subspace. Combining (1) and (2) yields the equality

span(W) = W.
[

2. Let S be linearly independent subset of R". Suppose that v ¢ span(S). Show
that the set S U {v} is linearly independent.

Proof: Assume that S is linearly independent subset of R™ and that v is a vector

in R" with
v & span(95). (3)
Assume that ¢y, ¢, ..., ¢, and ¢ solve the equation
C1U1 + CoUg + -+ + U + cv = 0, (4)
where vy, v9,...,v, € S.

We first see that ¢ = 0 in (4); otherwise we can solve for v in (4) to obtain

C1 Co Cr.
V= ="V — V2= — U,
C C C

which shows that v € span(S), and this is in direct contradiction with (3).
Hence,
c=0 (5)

and, substituting into (4),

U1 + Covg + - - - + v = 0. (6)
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Next, since the vectors vy, vs, ..., v, are in S and S is linearly independent, it
follows from (6) that
cg=c=--=c¢;=0. (7)
Combining (5) and (6) we see that (4) implies that
co=cp=---=¢c,=c=0;
hence, S U {v} is linearly independent. O
3. Let W be a subspace of R" with dimension k < n. Let {wy,ws,..., wi} be a
basis for W. Prove that there exist vectors vy, vs, ..., v,_; in R™ such that the
set {wy, we, ..., Wy, v1,V2,..., vk} is a basis for R™.

Proof: Assume that W is a subspace of R" with basis {wy, ws, ..., wy}; so that
dim(W) = k. Assume also that k& < n. Then, there exists v; € R™ such that
vy & span({wq, wo, ..., wy}); otherwise, {wq, ws, ..., wx} would span R™ and it
would therefore be a basis for R™, since it is also linearly independent; but this
is impossible because k < n. It therefore follows from Problem 2 above that the
set {wy, wa, ..., wy, v} is linearly independent.

If {wy, we, ..., wy, v} spans R it would be basis for R”, so that k+1 = n and
the proof of the statement is done. On the other hand, if span({wq, wo, ..., wy, v1}) #
R™, there exists v, € R™ such that

(% g Span({wh w2, .. ., Wk, Ul})‘
Consequently, the set {wq,ws, ..., wg, vy, v} is linearly independent, by Prob-
lem 2 above. If span({w,ws, ..., wg, v1,v2}) = R™ we are done and k + 2 = n.

If not, there exists v3 € R™ such that

vs & span({wy, wa, ..., Wy, v1,V2}).
Continuing in this fashion, we obtain a set of vectors vy, v, ..., v, in R™ such
that the set
{w17w27 cooy Wy U1, Vo, ... 7/U€}

is linearly independent and

n
span({wy, wa, ..., Wk, vy, Ve, ..., v}) = R"™.
Hence, the set {wy,ws, ..., wg, v1,vs,..., v} is a basis for R™; so that
k+/{=n,

from which we get that ¢ = n—Fk, and the proof of the assertion is now complete.
]
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4. Let A be an m x n matrix and b € R™. Prove that if Az = b has a solution z
in R", then (b, v) = 0 for every v is the null space of AT,

Solution: Let x be a solution of Az = b and v € Nyr. Then, ATv = 0 and

(b,v) = (Azx,v)

= (Ax)Tw
= 2TATw
= 270
= 0.
0
Ry
Ry
5. Let A € M(m,n) and write A = |, where Ry, Rs, ..., R,, denote the
Ry,

rows of A. Define R} to be the set
Ri={weR"|Ruw=0foralli=12...,m}

that is, Ry is the set of vectors in R™ which are orthogonal to the vectors
RT RT ... RT in R™

(a) Prove that R is a subspace of R™.

Solution: First, observe that R;0 = 0 for all + = 1,2,...,m, so that
0 € Ry and so Ry # 0.

Next, let w; and wy be vectors in R4. Then,
Riw, =0 foralli=1,2,...,m; (8)

and
Riwy, =0 foralli=1,2,...,m. (9)

Thus, adding the equations in (8) and (9), and using the distributive prop-
erty of matrix multiplication, we get

Ri(wy +wy) =0 foralli=1,2,...,m,
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which shows that w; +w, € RY. Hence, R is closed under vector addition.
Next, let w € R} and ¢ be a scalar. Then,

Rw=0 foralli=1,2,...,m. (10)
Thus, multiplying the equation in (10),

cRw=0 forallt=1,2,...,m,
from which we get

Ricw=0 forallt=1,2,...,m,

by the linearity of the Euclidean inner product. Hence, cw € R, and we
have therefore shown that R is closed under scalar multiplication.

We have shown that R is nonempty and closed under vector addition and
scalar multiplication. Hence, R} is subspace of R™. 0

Prove that R = Nj.
Proof: The following chain of equivalences is true:

weRE iff Rw=0 foralli=1,2,...,m

iff Aw=0

iff wENA.

Consequently, Ry = Nj4. O

Let v denote a vector in R™. Prove that if v € N4 and vT € R4, then
v=0.

Proof: Assume that v € R" is in v € N4 and its transpose, v’ is in the
row-space of A, R4. By the result of part (b), v € RY; that is,

Rv=0 fori=1,2,...,m. (11)
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Now, since v € R4, there exist scalars ¢y, ¢, -, ¢,, such that
T _
v o= 01R1 +C2R2+ +CmRm (12)
Multiplying both sides of (12) on the right by v we obtain
vTv = (c1Ry + caRy + -+ + R )0,

or
||U||2 = c1Rv + caRov + - - - + ¢ R, (13)

where we have used the distributive property of matrix multiplication.
Combining (11) and (13) we see that ||v]| = 0, from which we get that
v=0. O

6. Let B be an n x n matrix satisfying B*> = 0 and put A = I + B, where I denotes
the n x n identity matrix. Prove that A is invertible and compute A~! in terms
of I, B and B.

Solution: Set Q = ¢ + 3B + c3B? and look for scalars ¢, ¢, and c3 such
that AQ = 1.

Now,

AQ = (I+B)Q
= ¢l + B+ c3B? + B(ceil + coB + c3B?)
= C1[+CQB+CgBZ +ClB+CQBQ +C333

= 01] —I— (Cl + CQ)B —I— (Cg + 03)B2,
where we have used the assumption that B> = O. Thus, AQ = I if and only if

C1 =1
cl1+cy = 0
Co+c3 = 0.

Solving this system we get ¢; = 1, ¢ = —1 and ¢5 = 1. Hence, if Q = [ — B+ B2,
then @ is a right—inverse of A = I + B and therefore A = I + B is invertible
and A~ =1 — B+ B2 OJ

7. Let A, B € M(n,n). Show that det(AB) = det(BA).
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Proof: Compute
det(AB) = det(A)det(B)
= det(B)det(A),
since multiplication of real numbers is commutative. Hence,
det(AB) = det(BA),

which was to be shown. O

8. Given an n x n matrix A = [a;;], the trace of A, denoted tr(A), is the sum of
the entries along the main diagonal of A; that is tr(A) = Z Qi
i=1
Let A and B denote n x n matrices. Show that tr(AB) = tr(BA).
Proof: Write A = [a;;] and B = [bj| for ¢ = 1,2,....n, j = 1,2,...,n and
k=1,2,...,n. Then, AB = [c;], where

n

Ci. — Z aijbjk. (14)

Jj=1

Consequently,

3

tl"(AB) = Cii

=1

(15)

3

n

= E aijbji,

i=1 j=1

where we have used (14).

Interchanging the order of summation in (15) we obtain

tr(AB) = zn:zn:aijbji

j=1 i=1

= DD biay

j=1 i=1

n
= E djj,
=1
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where .
dijijiaij7 fOI'j: 1,2,...,77,7
=1

are the entries along the main diagonal of the matrix product BA. Hence, we
have shown that tr(AB) = tr(BA). O

9. Let A and B be n x n matrices such that B = Q' AQ for some invertible n x n
matrix ().

Prove that A and B have the same determinant and the same trace.

Solution: Use the result of Problem 7 to compute

det(B) = det(Q'AQ)
— et(QQ1A)
= det(l/A)

= det(A).
Similarly, using the result of Problem 8,

w(B) = t(QAQ)

= tr(QQ™'A)
= tr([A)
= tr(A).
O
(12 13
10. LetA—<1/2 2/3>.
(a) Find a basis B = {v;,vs} for R? made up of eigenvectors of A.
Solution: First, we look for values of A such that the system
(A=X)v=0 (16)

has nontrivial solutions in R2. This is the case if and only if det(A —\I) =
0, which occurs if and only if

7.1
M- A+ >=0
6" 6
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or

()

1
)\1:6 and )\2:1

We then get that

are eigenvalues of A.

To find an eigenvector corresponding to the eigenvalue \;, we solve the
system in (16) for A = A\;. In this case, the system can be reduced to the
equation

T+ X9 = 0,

which has solutions

where t is arbitrary. We can therefore take

(1)

as an eigenvector corresponding to A =

| =

Similar calculations for A = Ay = 1 lead to the equation

3[E1 — 2272 = 0,

()=1(3);

where ¢ is arbitrary. Thus, in this case, we obtain the eigenvector

w=(2).

Since v; and v, are linearly independent, they constitute a basis for R?
because dim(R?) = 2. O

Let @ be the 2 X 2 matrix Q = [v; v |, where {vy, v} is the basis of
eigenvectors found in (a) above. Verify that @ is invertible and compute

Q~1AQ.

which has solutions
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Solution: () = b2 ) , so that det(Q) =3+ 2 =05 # 0. Hence Q is

-1 3
1 3 —2
-1 _
=51 7)

) o) (o 3)
7))

invertible and

Next, compute

QT'AQ =

|
o] — o]
VR VR
— W — W

()
_ (AS 22)

Thus, Q7 'AQ is a diagonal matrix with the eigenvalues of A as entries
along the main diagonal. U

Use the result in part (b) above to find a formula for for computing A* for
every positive integer k. Can you say anything about klim AF?
—00

Solution: Let D denote the matrix ( M 0

0 )\2> . Then, from part (b) in

this problem,
QtAQ = D.

Multiplying this equation by @ on the left and Q! on the right, we obtain
that

A=QDQ.
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It then follows that
A2 = (QDQH(@QDQ™)
= RDQ'Q)DQ™
= QDIDQ!
= QD*Q '
We may now proceed by induction on k£ to show that
AP =QDFQ™' forall k=1,2,3,...
In fact, once we have established that
Ak—l — QDk—lQ—l
we compute, using the associativity of the matrix product,
AR = AAR
= (QDQ)(@D*'Q™)
= QDQ'Q)D*'Q™!

= QDID*1Q™!
= QDFQ L.
Thus, we may compute A* as follows
Ak — QDkQ—l

S ICE
-s( )0 W)

Substituting for the values of A\; and Ay we then get that

D DR

10
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from which we get that

o1 3/6F) +2 —(2/6%) +2
A :5<—((3§6k))—|—3 ((2/6k)+3)’ for all £.

Observe that, as k — o0,

(3 0s)

O

11. Let T: R® — R™ denote a linear transformation. Let W denote the null space,
Nz, of T. Assume that W has dimension k < n. Let {wy, ws, ..., w;} be a basis
for W and {wy,wa, ..., wg, v1,v9,...,0,_x} be a basis for R”. Prove that that
the set {T'(v1),T(v2),...,T(v,_x)} is a basis for Zp, the image of T. Deduce
that

dim(Nr) + dim(Z7) = n.

Solution: Assume that T: R® — R™ is a linear transformation. Let W = N7,

null space, and assume that dim(W) = k < n. Let {wy,ws, ..., wi} be a basis
for W and {wy,ws, ..., wg,v1,vs,...,v,_k} be a basis for R”. We show that the
set

{T(v1),T(v2), -, T(vni)}
is a basis for the image of T', Zr.
We first show that {T'(v1),T(vg),...,T(v,—x)} spans Zp. Let y € Zr; then,

y =T(x), for some z € R". (17)

Since {wq,ws, ..., Wk, v1,vs,..., 0, k} be a basis for R, there exists scalars
dl, dg, e ,dk, C1,C2y...,Cp—f such that

r = diw; + doywy + -+ - + dpwy + V1 + -+ CugUp— (18)

It follows from (17), (18) and the assumption that 7" is linear that
y=diT(wy) + doT(we) + - - + dpT(wy) + 1T (v1) + -+ - + kT (). (19)

Next, use the fact that wq, w», ..., w; are in the null space of 1" to obtain from
(19) that
y=cT(v)+ -+ T (Vi)
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which shows that y € span({T'(v1),T(ve),...,T(vn—k)}). We have therefore
shown that
Zr Cspan({T(v1), T(va), ..., T(vn—k)}). (20)

In order to show the reverse inclusion to that in (20), let
y € span({T'(v1), T (va), ..., T (vn-k)});

then,
Yy = ClT<U1) + CQT(’UQ) +---+ CnszT(’Unfk% (21)

for some scalars ¢y, co, ..., c,_. Next, use the assumption that 7' is linear to
get from (21) that

y=T(c1v1 + cova + - -+ + Cp—kUn_s),
which shows that y € Zp. Thus,
span({T'(v1), T(v), ..., T(vn_i)}) C Ir. (22)
Combining (20) and (22) yields
Ty = span({T(v1), T (v2), ..., T(vn_s)}).

Hence, {T'(v1),T(va), ..., T(v,_x)} spans Zp.

Next, we shoe that {T'(v1),T(v2),...,T(v,_x)} is linearly independent. To see
why this is so, let ¢y, co, ..., c,_r be scalars such that

aT(vy) + 2T (ve) + -+ + i T (Vp—k) = 0. (23)
Using the assumption that 7" is linear, we can rewrite (23) as
T(c1v1 + cova + -+ - + CpgUp—i) = 0,

which shows that ¢jv1+cova+- - -+ ¢p_1Vn_i € Np. Thus, since {wy, wo, ..., wg}
is a basis for Np,

C101 + CoUg + -+ Cp kU = diwa + dawy + - - + dpwy, (24)
for some scalars dy, ds, ..., d,. We can rewrite (24) as

(—d)wy + (—do)wg + « -+ + (—d)wk, + c1v1 + covg + + -+ + gV = 0, (25)
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12.

so that, since {wy, wy, ..., Wk, v1, V2, ..., V,_} is & basis for R", it follows from
(25) that

—dlz—dgz"':—dk201262:"'26n_k20. (26)
In particular, we get from (26) that
cp=cy=-=cp_ =0. (27)

We have shown that (23) implies (27); thus, the set {T'(vy),T(v2), ..., T(Vn—k)}

is linearly independent.
Hence {T'(v1),T(vs),...,T(vn_k)} is is a basis for Zr, so that
dim(Zy) = n — k = n — dim(N7),
from which we get
dim(N7) + dim(Z7) = n,
which was to be shown. U
Let T: R® — R" denote a linear transformation. Prove that if A is an eigenvalue

of T, then \¥ is an eigenvalue of T* for every positive integer k. If u is an
eigenvalue of T%, is u'/* always and eigenvalue of T'?

Solution: Let \ be an eigenvalue of T: R — R™. Then, there exists a nonzero
vector, v, in R™ such that
T(v) = M.

Applying the transformation, 7', on both sides and using the fact that T is
linear and that v is an eigenvector corresponding to A, we obtain that

T?(v) = T(M) = AT (v) = AMw = M\,

so that, since v # 0, A\? is an eigenvalue for T2,

We may now proceed by induction on k to show that
N forall k=1,2,3,...,

is an eigenvalue of T%. To do this, assume we have established that \*~! is
an eigenvalue of T7#~! and that v is an eigenvector for T' corresponding to the
eigenvalue ), so that v is also an eigenvector of 77! corresponding to A*~1. We
then have that

T (v) = N1,
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13.

Thus, applying the transformation, 7', on both sides and using the fact that T’
is linear and that v is an eigenvector corresponding to A, we obtain that

TH(v) = T(T* ) = T(A\*1o) = N1 (0) = M1 = M,
so that, since v # 0, A* is an eigenvalue for T%.

Next, consider the function 7': R? — R? given by rotation in the counterclock-
wise sense by 90° or 7/2 radians; that is,

()= () (5o

Then, T?: R? — R? is given by

#(0)=00 56 wa (5)ew

which has 1 = —1 as the only eigenvalue. Observe that T" has no real eigenval-
ues, so p'/? cannot be a (real) eigenvalue of T. 0

Let £ = {e1,es} denote the standard basis in R?, and let f: R? — R? be a
linear function satisfying: f(e;) = e + ey and f(eg) = 2e3 — es.

Give the matrix representations for f and f o f relative to &£.

Solution: Observe that

reo= (1) e s = ()

It then follows that the matrix representation for f relative to & is

1 2
vi=(1 3)

The matrix representation of f o f is the product MyM;, or

w1 ) () -0 5)
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14.

15.

A function f: R? — R? is defined as follows: Each vector v € R? is reflected
across the y—axis, and then doubled in length to yield f(v).

Verify that f is linear and determine the matrix representation, My, for f
relative to the standard basis in R2.

Solution: The function f is the composition of the reflection R: R* — R?

given by
R( ):( )( >, forall( )GR,
Y 0 1 ) )

and the function T: R? — R? given by T'(w) = 2w for all w € R? or, in matrix

form,
T(m):(2 0><x>’ forall(x)€R2.
Y 0 2 Y Y

Note that both R and T are linear since they are both defined in terms of
multiplication by a matrix. It then follows that f = T o R is linear and its
matrix representation, M, relative to the standard basis in R? is

2 0\/=1 0 2 0
A@:Mﬂhz(o 2)(0 1):(0 2)

Find a 2 x 2 matrix A such that the function T': R? — R? given by T'(v) = Av
maps the coordinates of any vector, relative to the standard basis in R, to its

coordinates relative the basis B = { ( 1 ) , (_1 ) } .

Solution: Denote the vectors in B by v; and vy, respectively, so that

o (1) i e (1)

We want the function T to satisfy
T(v) = [v]s

for every v € R? given in terms of the standard basis in R?. We want T to
be linear, so that all we need to know about 7" is what it does to the standard
basis; that is, we need to know T'(e1) and T'(e2). To find out what T'(e;) is, we
need to find scalars ¢; and ¢y such that

O

C1U1 + CU2 = €y,
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that is, we need to solve the system

(1) ()=

which we can solve by multiplying by the inverse of the matrix on the left:

(2= Da=(12)

so that

Similarly,

It then follows that

)



