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Solutions to Review Problems for Final Exam

1. Let W be a subspace of ℝn. Prove that span(W ) = W .

Proof: Assume that W is a subspace of ℝn. Then, since span(W ) is the smallest
subspace of ℝn that contains W , it follows that

W ⊆ span(W ) (1)

and
span(W ) ⊆ W. (2)

The inclusion in (2) follows from the fact that W ⊆ W and the assumption that
W is a subspace. Combining (1) and (2) yields the equality

span(W ) = W.

2. Let S be linearly independent subset of ℝn. Suppose that v ∕∈ span(S). Show
that the set S ∪ {v} is linearly independent.

Proof: Assume that S is linearly independent subset of ℝn and that v is a vector
in ℝn with

v ∕∈ span(S). (3)

Assume that c1, c2, . . . , ck and c solve the equation

c1v1 + c2v2 + ⋅ ⋅ ⋅+ ckvk + cv = 0, (4)

where v1, v2, . . . , vk ∈ S.

We first see that c = 0 in (4); otherwise we can solve for v in (4) to obtain

v = −c1
c
v1 −

c2
c
v2 − ⋅ ⋅ ⋅ −

ck
c
vk,

which shows that v ∈ span(S), and this is in direct contradiction with (3).
Hence,

c = 0 (5)

and, substituting into (4),

c1v1 + c2v2 + ⋅ ⋅ ⋅+ ckvk = 0. (6)
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Next, since the vectors v1, v2, . . . , vk are in S and S is linearly independent, it
follows from (6) that

c1 = c2 = ⋅ ⋅ ⋅ = ck = 0. (7)

Combining (5) and (6) we see that (4) implies that

c1 = c2 = ⋅ ⋅ ⋅ = ck = c = 0;

hence, S ∪ {v} is linearly independent.

3. Let W be a subspace of ℝn with dimension k < n. Let {w1, w2, . . . , wk} be a
basis for W . Prove that there exist vectors v1, v2, . . . , vn−k in ℝn such that the
set {w1, w2, . . . , wk, v1, v2, . . . , vn−k} is a basis for ℝn.

Proof: Assume that W is a subspace of ℝn with basis {w1, w2, . . . , wk}; so that
dim(W ) = k. Assume also that k < n. Then, there exists v1 ∈ ℝn such that
v1 ∕∈ span({w1, w2, . . . , wk}); otherwise, {w1, w2, . . . , wk} would span ℝn and it
would therefore be a basis for ℝn, since it is also linearly independent; but this
is impossible because k < n. It therefore follows from Problem 2 above that the
set {w1, w2, . . . , wk, v1} is linearly independent.

If {w1, w2, . . . , wk, v1} spans ℝn, it would be basis for ℝn, so that k+ 1 = n and
the proof of the statement is done. On the other hand, if span({w1, w2, . . . , wk, v1}) ∕=
ℝn, there exists v2 ∈ ℝn such that

v2 ∕∈ span({w1, w2, . . . , wk, v1}).

Consequently, the set {w1, w2, . . . , wk, v1, v2} is linearly independent, by Prob-
lem 2 above. If span({w1, w2, . . . , wk, v1, v2}) = ℝn we are done and k + 2 = n.
If not, there exists v3 ∈ ℝn such that

v3 ∕∈ span({w1, w2, . . . , wk, v1, v2}).

Continuing in this fashion, we obtain a set of vectors v1, v2, . . . , vℓ in ℝn such
that the set

{w1, w2, . . . , wk, v1, v2, . . . , vℓ}
is linearly independent and

span({w1, w2, . . . , wk, v1, v2, . . . , vℓ}) = ℝn.

Hence, the set {w1, w2, . . . , wk, v1, v2, . . . , vℓ} is a basis for ℝn; so that

k + ℓ = n,

from which we get that ℓ = n−k, and the proof of the assertion is now complete.
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4. Let A be an m × n matrix and b ∈ ℝm. Prove that if Ax = b has a solution x
in ℝn, then ⟨b, v⟩ = 0 for every v is the null space of AT .

Solution: Let x be a solution of Ax = b and v ∈ NAT . Then, ATv = 0 and

⟨b, v⟩ = ⟨Ax, v⟩

= (Ax)Tv

= xTATv

= xT0

= 0.

□

5. Let A ∈ M(m,n) and write A =

⎛⎜⎜⎜⎝
R1

R2
...
Rm

⎞⎟⎟⎟⎠ , where R1, R2, . . . , Rm denote the

rows of A. Define ℛ⊥A to be the set

ℛ⊥A = {w ∈ ℝn ∣ Riw = 0 for all i = 1, 2, . . . ,m};

that is, ℛ⊥A is the set of vectors in ℝn which are orthogonal to the vectors
RT

1 , R
T
2 , . . . , R

T
m in ℝn.

(a) Prove that ℛ⊥A is a subspace of ℝn.

Solution: First, observe that Ri0 = 0 for all i = 1, 2, . . . ,m, so that
0 ∈ ℛ⊥A and so ℛ⊥A ∕= ∅.
Next, let w1 and w2 be vectors in ℛ⊥A. Then,

Riw1 = 0 for all i = 1, 2, . . . ,m; (8)

and
Riw2 = 0 for all i = 1, 2, . . . ,m. (9)

Thus, adding the equations in (8) and (9), and using the distributive prop-
erty of matrix multiplication, we get

Ri(w1 + w2) = 0 for all i = 1, 2, . . . ,m,
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which shows that w1+w2 ∈ ℛ⊥A. Hence,ℛ⊥A is closed under vector addition.

Next, let w ∈ ℛ⊥A and c be a scalar. Then,

Riw = 0 for all i = 1, 2, . . . ,m. (10)

Thus, multiplying the equation in (10),

cRiw = 0 for all i = 1, 2, . . . ,m,

from which we get

Ricw = 0 for all i = 1, 2, . . . ,m,

by the linearity of the Euclidean inner product. Hence, cw ∈ ℛ⊥A, and we
have therefore shown that ℛ⊥A is closed under scalar multiplication.

We have shown that ℛ⊥A is nonempty and closed under vector addition and
scalar multiplication. Hence, ℛ⊥A is subspace of ℝn. □

(b) Prove that ℛ⊥A = NA.

Proof: The following chain of equivalences is true:

w ∈ ℛ⊥A iff Riw = 0 for all i = 1, 2, . . . ,m

iff

⎛⎜⎜⎜⎝
R1w
R2w

...
Rmv

⎞⎟⎟⎟⎠ = 0

iff Aw = 0

iff w ∈ NA.

Consequently, ℛ⊥A = NA.

(c) Let v denote a vector in ℝn. Prove that if v ∈ NA and vT ∈ ℛA, then
v = 0.

Proof: Assume that v ∈ ℝn is in v ∈ NA and its transpose, vT is in the
row–space of A, ℛA. By the result of part (b), v ∈ ℛ⊥A; that is,

Riv = 0 for i = 1, 2, . . . ,m. (11)
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Now, since vT ∈ ℛA, there exist scalars c1, c2, ⋅, cm such that

vT = c1R1 + c2R2 + ⋅ ⋅ ⋅+ cmRm. (12)

Multiplying both sides of (12) on the right by v we obtain

vTv = (c1R1 + c2R2 + ⋅ ⋅ ⋅+ cmRm)v,

or
∥v∥2 = c1R1v + c2R2v + ⋅ ⋅ ⋅+ cmRmv, (13)

where we have used the distributive property of matrix multiplication.
Combining (11) and (13) we see that ∥v∥ = 0, from which we get that
v = 0.

6. Let B be an n×n matrix satisfying B3 = 0 and put A = I+B, where I denotes
the n×n identity matrix. Prove that A is invertible and compute A−1 in terms
of I, B and B2.

Solution: Set Q = c1I + c2B + c3B
2 and look for scalars c1, c2 and c3 such

that AQ = I.

Now,
AQ = (I +B)Q

= c1I + c2B + c3B
2 +B(c1I + c2B + c3B

2)

= c1I + c2B + c3B
2 + c1B + c2B

2 + c3B
3

= c1I + (c1 + c2)B + (c2 + c3)B
2,

where we have used the assumption that B3 = O. Thus, AQ = I if and only if⎧⎨⎩
c1 = 1
c1 + c2 = 0
c2 + c3 = 0.

Solving this system we get c1 = 1, c2 = −1 and c3 = 1. Hence, if Q = I−B+B2,
then Q is a right–inverse of A = I + B and therefore A = I + B is invertible
and A−1 = I −B +B2. □

7. Let A,B ∈M(n, n). Show that det(AB) = det(BA).
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Proof: Compute
det(AB) = det(A) det(B)

= det(B) det(A),

since multiplication of real numbers is commutative. Hence,

det(AB) = det(BA),

which was to be shown.

8. Given an n × n matrix A = [aij], the trace of A, denoted tr(A), is the sum of

the entries along the main diagonal of A; that is tr(A) =
n∑

i=1

aii.

Let A and B denote n× n matrices. Show that tr(AB) = tr(BA).

Proof: Write A = [aij] and B = [bjk] for i = 1, 2, . . . , n, j = 1, 2, . . . , n and
k = 1, 2, . . . , n. Then, AB = [cik], where

cik =
n∑

j=1

aijbjk. (14)

Consequently,

tr(AB) =
n∑

i=1

cii

=
n∑

i=1

n∑
j=1

aijbji,

(15)

where we have used (14).

Interchanging the order of summation in (15) we obtain

tr(AB) =
n∑

j=1

n∑
i=1

aijbji

=
n∑

j=1

n∑
i=1

bjiaij

=
n∑

j=1

djj,
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where

djj =
n∑

i=1

bjiaij, for j = 1, 2, . . . , n,

are the entries along the main diagonal of the matrix product BA. Hence, we
have shown that tr(AB) = tr(BA).

9. Let A and B be n×n matrices such that B = Q−1AQ for some invertible n×n
matrix Q.

Prove that A and B have the same determinant and the same trace.

Solution: Use the result of Problem 7 to compute

det(B) = det(Q−1AQ)

= det(QQ−1A)

= det(IA)

= det(A).

Similarly, using the result of Problem 8,

tr(B) = tr(Q−1AQ)

= tr(QQ−1A)

= tr(IA)

= tr(A).

□

10. Let A =

(
1/2 1/3
1/2 2/3

)
.

(a) Find a basis ℬ = {v1, v2} for ℝ2 made up of eigenvectors of A.

Solution: First, we look for values of � such that the system

(A− �I)v = 0 (16)

has nontrivial solutions in ℝ2. This is the case if and only if det(A−�I) =
0, which occurs if and only if

�2 − 7

6
�+

1

6
= 0,
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or

(�− 1)

(
�− 1

6

)
= 0.

We then get that

�1 =
1

6
and �2 = 1

are eigenvalues of A.

To find an eigenvector corresponding to the eigenvalue �1, we solve the
system in (16) for � = �1. In this case, the system can be reduced to the
equation

x1 + x2 = 0,

which has solutions (
x1
x2

)
= t

(
1
−1

)
,

where t is arbitrary. We can therefore take

v1 =

(
1
−1

)

as an eigenvector corresponding to � =
1

6
.

Similar calculations for � = �2 = 1 lead to the equation

3x1 − 2x2 = 0,

which has solutions (
x1
x2

)
= t

(
2
3

)
,

where t is arbitrary. Thus, in this case, we obtain the eigenvector

v2 =

(
2
3

)
.

Since v1 and v2 are linearly independent, they constitute a basis for ℝ2

because dim(ℝ2) = 2. □

(b) Let Q be the 2 × 2 matrix Q = [ v1 v2 ], where {v1, v2} is the basis of
eigenvectors found in (a) above. Verify that Q is invertible and compute
Q−1AQ.
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Solution: Q =

(
1 2
−1 3

)
, so that det(Q) = 3 + 2 = 5 ∕= 0. Hence Q is

invertible and

Q−1 =
1

5

(
3 −2
1 1

)
.

Next, compute

Q−1AQ =
1

5

(
3 −2
1 1

)(
1/2 1/3
1/2 2/3

)(
1 2
−1 3

)

=
1

5

(
3 −2
1 1

)(
1/6 2
−1/6 3

)

=
1

5

(
5/6 0
0 5

)

=

(
1/6 0
0 1

)

=

(
�1 0
0 �2

)
.

Thus, Q−1AQ is a diagonal matrix with the eigenvalues of A as entries
along the main diagonal. □

(c) Use the result in part (b) above to find a formula for for computing Ak for
every positive integer k. Can you say anything about lim

k→∞
Ak?

Solution: Let D denote the matrix

(
�1 0
0 �2

)
. Then, from part (b) in

this problem,
Q−1AQ = D.

Multiplying this equation by Q on the left and Q−1 on the right, we obtain
that

A = QDQ−1.
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It then follows that

A2 = (QDQ−1)(QDQ−1)

= QD(Q−1Q)DQ−1

= QDIDQ−1

= QD2Q−1.

We may now proceed by induction on k to show that

Ak = QDkQ−1 for all k = 1, 2, 3, . . .

In fact, once we have established that

Ak−1 = QDk−1Q−1,

we compute, using the associativity of the matrix product,

Ak = AAk−1

= (QDQ−1)(QDk−1Q−1)

= QD(Q−1Q)Dk−1Q−1

= QDIDk−1Q−1

= QDkQ−1.

Thus, we may compute Ak as follows

Ak = QDkQ−1

=

(
1 2
−1 3

)(
�1 0
0 �2

)k
1

5

(
3 −2
1 1

)

=
1

5

(
1 2
−1 3

)(
�k1 0
0 �k2

)(
3 −2
1 1

)
.

Substituting for the values of �1 and �2 we then get that

Ak =
1

5

(
1 2
−1 3

)(
1/6k 0

0 1

)(
3 −2
1 1

)
,
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from which we get that

Ak =
1

5

(
(3/6k) + 2 −(2/6k) + 2
−(3/6k) + 3 (2/6k) + 3

)
, for all k.

Observe that, as k →∞,

Ak →
(

2/5 2/5
3/5 3/5

)
.

□

11. Let T : ℝn → ℝm denote a linear transformation. Let W denote the null space,
NT , of T . Assume that W has dimension k < n. Let {w1, w2, . . . , wk} be a basis
for W and {w1, w2, . . . , wk, v1, v2, . . . , vn−k} be a basis for ℝn. Prove that that
the set {T (v1), T (v2), . . . , T (vn−k)} is a basis for ℐT , the image of T . Deduce
that

dim(NT ) + dim(ℐT ) = n.

Solution: Assume that T : ℝn → ℝm is a linear transformation. Let W = NT ,
null space, and assume that dim(W ) = k < n. Let {w1, w2, . . . , wk} be a basis
for W and {w1, w2, . . . , wk, v1, v2, . . . , vn−k} be a basis for ℝn. We show that the
set

{T (v1), T (v2), . . . , T (vn−k)}

is a basis for the image of T , ℐT .

We first show that {T (v1), T (v2), . . . , T (vn−k)} spans ℐT . Let y ∈ ℐT ; then,

y = T (x), for some x ∈ ℝn. (17)

Since {w1, w2, . . . , wk, v1, v2, . . . , vn−k} be a basis for ℝn, there exists scalars
d1, d2, . . . , dk, c1, c2, . . . , cn−k such that

x = d1w1 + d2w2 + ⋅ ⋅ ⋅+ dkwk + c1v1 + ⋅ ⋅ ⋅+ cn−kvn−k. (18)

It follows from (17), (18) and the assumption that T is linear that

y = d1T (w1) + d2T (w2) + ⋅ ⋅ ⋅+ dkT (wk) + c1T (v1) + ⋅ ⋅ ⋅+ cn−kT (vn−k). (19)

Next, use the fact that w1, w2, . . . , wk are in the null space of T to obtain from
(19) that

y = c1T (v1) + ⋅ ⋅ ⋅+ cn−kT (vn−k),
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which shows that y ∈ span({T (v1), T (v2), . . . , T (vn−k)}). We have therefore
shown that

ℐT ⊆ span({T (v1), T (v2), . . . , T (vn−k)}). (20)

In order to show the reverse inclusion to that in (20), let

y ∈ span({T (v1), T (v2), . . . , T (vn−k)});

then,
y = c1T (v1) + c2T (v2) + ⋅ ⋅ ⋅+ cn−kT (vn−k), (21)

for some scalars c1, c2, . . . , cn−k. Next, use the assumption that T is linear to
get from (21) that

y = T (c1v1 + c2v2 + ⋅ ⋅ ⋅+ cn−kvn−k),

which shows that y ∈ ℐT . Thus,

span({T (v1), T (v2), . . . , T (vn−k)}) ⊆ ℐT . (22)

Combining (20) and (22) yields

ℐT = span({T (v1), T (v2), . . . , T (vn−k)}).

Hence, {T (v1), T (v2), . . . , T (vn−k)} spans ℐT .

Next, we shoe that {T (v1), T (v2), . . . , T (vn−k)} is linearly independent. To see
why this is so, let c1, c2, . . . , cn−k be scalars such that

c1T (v1) + c2T (v2) + ⋅ ⋅ ⋅+ cn−kT (vn−k) = 0. (23)

Using the assumption that T is linear, we can rewrite (23) as

T (c1v1 + c2v2 + ⋅ ⋅ ⋅+ cn−kvn−k) = 0,

which shows that c1v1+c2v2+⋅ ⋅ ⋅+cn−kvn−k ∈ NT . Thus, since {w1, w2, . . . , wk}
is a basis for NT ,

c1v1 + c2v2 + ⋅ ⋅ ⋅+ cn−kvn−k = d1w2 + d2wk + ⋅ ⋅ ⋅+ dkwk, (24)

for some scalars d1, d2, . . . , dk. We can rewrite (24) as

(−d1)w2 + (−d2)wk + ⋅ ⋅ ⋅+ (−dk)wk + c1v1 + c2v2 + ⋅ ⋅ ⋅+ cn−kvn−k = 0, (25)
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so that, since {w1, w2, . . . , wk, v1, v2, . . . , vn−k} is a basis for ℝn, it follows from
(25) that

−d1 = −d2 = ⋅ ⋅ ⋅ = −dk = c1 = c2 = ⋅ ⋅ ⋅ = cn−k = 0. (26)

In particular, we get from (26) that

c1 = c2 = ⋅ ⋅ ⋅ = cn−k = 0. (27)

We have shown that (23) implies (27); thus, the set {T (v1), T (v2), . . . , T (vn−k)}
is linearly independent.

Hence {T (v1), T (v2), . . . , T (vn−k)} is is a basis for ℐT , so that

dim(ℐT ) = n− k = n− dim(NT ),

from which we get
dim(NT ) + dim(ℐT ) = n,

which was to be shown. □

12. Let T : ℝn → ℝn denote a linear transformation. Prove that if � is an eigenvalue
of T , then �k is an eigenvalue of T k for every positive integer k. If � is an
eigenvalue of T k, is �1/k always and eigenvalue of T?

Solution: Let � be an eigenvalue of T : ℝn → ℝn. Then, there exists a nonzero
vector, v, in ℝn such that

T (v) = �v.

Applying the transformation, T , on both sides and using the fact that T is
linear and that v is an eigenvector corresponding to �, we obtain that

T 2(v) = T (�v) = �T (v) = ��v = �2v,

so that, since v ∕= 0, �2 is an eigenvalue for T 2.

We may now proceed by induction on k to show that

�k, for all k = 1, 2, 3, . . . ,

is an eigenvalue of T k. To do this, assume we have established that �k−1 is
an eigenvalue of T k−1 and that v is an eigenvector for T corresponding to the
eigenvalue �, so that v is also an eigenvector of T k−1 corresponding to �k−1. We
then have that

T k−1(v) = �k−1v.
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Thus, applying the transformation, T , on both sides and using the fact that T
is linear and that v is an eigenvector corresponding to �, we obtain that

T k(v) = T (T k−1v) = T (�k−1v) = �k−1T (v) = �k−1�v = �kv,

so that, since v ∕= 0, �k is an eigenvalue for T k.

Next, consider the function T : ℝ2 → ℝ2 given by rotation in the counterclock-
wise sense by 90∘ or �/2 radians; that is,

T

(
x
y

)
=

(
0 −1
1 0

)(
x
y

)
for all

(
x
y

)
∈ ℝ2.

Then, T 2 : ℝ2 → ℝ2 is given by

T 2

(
x
y

)
=

(
−1 0

0 −1

)(
x
y

)
for all

(
x
y

)
∈ ℝ2,

which has � = −1 as the only eigenvalue. Observe that T has no real eigenval-
ues, so �1/2 cannot be a (real) eigenvalue of T . □

13. Let ℰ = {e1, e2} denote the standard basis in ℝ2, and let f : ℝ2 → ℝ2 be a
linear function satisfying: f(e1) = e1 + e2 and f(e2) = 2e1 − e2.
Give the matrix representations for f and f ∘ f relative to ℰ .

Solution: Observe that

f(e1) =

(
1
1

)
and f(e2) =

(
2
−1

)
.

It then follows that the matrix representation for f relative to ℰ is

Mf =

(
1 2
1 −1

)
.

The matrix representation of f ∘ f is the product MfMf , or

Mf∘f =

(
1 2
1 −1

)(
1 2
1 −1

)
=

(
3 0
0 3

)
.

□



Math 60. Rumbos Spring 2013 15

14. A function f : ℝ2 → ℝ2 is defined as follows: Each vector v ∈ ℝ2 is reflected
across the y–axis, and then doubled in length to yield f(v).

Verify that f is linear and determine the matrix representation, Mf , for f
relative to the standard basis in ℝ2.

Solution: The function f is the composition of the reflection R : ℝ2 → ℝ2

given by

R

(
x
y

)
=

(
−1 0

0 1

)(
x
y

)
, for all

(
x
y

)
∈ ℝ2,

and the function T : ℝ2 → ℝ2 given by T (w) = 2w for all w ∈ ℝ2 or, in matrix
form,

T

(
x
y

)
=

(
2 0
0 2

)(
x
y

)
, for all

(
x
y

)
∈ ℝ2.

Note that both R and T are linear since they are both defined in terms of
multiplication by a matrix. It then follows that f = T ∘ R is linear and its
matrix representation, Mf , relative to the standard basis in ℝ2 is

Mf = MTMR =

(
2 0
0 2

)(
−1 0

0 1

)
=

(
−2 0

0 2

)
□

15. Find a 2× 2 matrix A such that the function T : ℝ2 → ℝ2 given by T (v) = Av
maps the coordinates of any vector, relative to the standard basis in ℝ2, to its

coordinates relative the basis ℬ =

{(
1
1

)
,

(
1
−1

)}
.

Solution: Denote the vectors in ℬ by v1 and v2, respectively, so that

v1 =

(
1
1

)
and v2 =

(
1
−1

)
.

We want the function T to satisfy

T (v) = [v]ℬ

for every v ∈ ℝ2 given in terms of the standard basis in ℝ2. We want T to
be linear, so that all we need to know about T is what it does to the standard
basis; that is, we need to know T (e1) and T (e2). To find out what T (e1) is, we
need to find scalars c1 and c2 such that

c1v1 + c2v2 = e1;
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that is, we need to solve the system(
1 1
1 −1

)(
c1
c2

)
= e1,

which we can solve by multiplying by the inverse of the matrix on the left:(
c1
c2

)
=

1

−2

(
−1 −1
−1 1

)
e1 =

(
1/2
1/2

)
,

so that

T (e1) =

(
1/2
1/2

)
.

Similarly,

T (e2) =

(
1/2
−1/2

)
.

It then follows that

A =

(
1/2 1/2
1/2 −1/2

)
.

□


