Assignment #20

Due on Friday, April 11, 2014

Read Section 7.1 on the *Definition of Convergence in Distribution* in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Read Section 7.2 on the *mgf Convergence Theorem* in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Read Section 5.4 on The Poisson Distribution in DeGroot and Schervish.

Read Section 5.6 on *The Normal Distribution* in DeGroot and Schervish.

Background and Definitions

Definition (Convergence in Distribution). Let (X_n) be a sequence of random variables with cumulative distribution functions F_{X_n} , for n = 1, 2, 3, ..., and Y be a random variable with cdf F_Y . We say that the sequence (X_n) converges to Y in distribution, if

$$\lim_{n \to \infty} F_{X_n}(x) = F_Y(x)$$

for all x where F_Y is continuous. The distribution of Y is usually called the **limiting** distribution of the sequence (X_n) .

Theorem (mgf Convergence Theorem). Let (X_n) be a sequence of random variables with moment generating functions $\psi_{X_n}(t)$, for |t| < h, n = 1, 2, 3, ..., and some positive number h. Suppose Y has mgf $\psi_Y(t)$ which exists for |t| < h. Then, if

$$\lim_{n \to \infty} \psi_{X_n}(t) = \psi_Y(t), \quad for \ |t| < h,$$

it follows that $\lim_{n\to\infty} F_{X_n}(x) = F_Y(x)$ for all x where F_Y is continuous.

Do the following problems

1. Let a denote a real number and X_a be a discrete random variable with pmf

$$p_{x_a}(x) = \begin{cases} 1 & \text{if } x = a; \\ 0 & \text{elsewhere.} \end{cases}$$

- (a) Compute the cdf for X_a and sketch its graph.
- (b) Compute the mgf for X_a and determine $E(X_a)$ and $Var(X_a)$.

Math 151. Rumbos

2. Let (X_k) denote a sequence of independent identically distributed random variables such that $X_k \sim \text{Normal}(\mu, \sigma^2)$ for every k = 1, 2, ..., and for some $\mu \in \mathbb{R}$ and $\sigma > 0$. For each $n \ge 1$, define

$$\overline{X}_n = \frac{X_1 + X_2 + \dots + X_n}{n}.$$

- (a) Determine the mgf, $\psi_{\overline{X}_n}(t)$, for \overline{X}_n , and compute $\lim_{n \to \infty} \psi_{\overline{X}_n}(t)$.
- (b) Find the limiting distribution of \overline{X}_n as $n \to \infty$. (*Hint:* Compare your answer in part (a) to your answer in part (b) of problem 1.)
- 3. Let (X_k) and \overline{X}_n be defined as in the previous problem. Define $Z_n = \frac{X_n \mu}{\sigma/\sqrt{n}}$ for all $n \ge 1$.
 - (a) Determine the mgf, $\psi_{Z_n}(t)$, for Z_n , and compute $\lim_{n \to \infty} \psi_{Z_n}(t)$.
 - (b) Find the limiting distribution of Z_n as $n \to \infty$.
- 4. Let (Y_n) be a sequence of discrete random variables having pmfs

$$p_{\mathbf{Y}_n}(y) = \begin{cases} 1 & \text{if } y = n, \\ 0 & \text{elsewhere.} \end{cases}$$

Compute the mgf of Y_n for each n = 1, 2, 3, ...

Does $\lim_{n \to \infty} \psi_{Y_n}(t)$ exist for any t in an open interval around 0?

Does the sequence (Y_n) have a limiting distribution? Justify your answer.

- 5. Let q = 0.95 denote the probability that a person, in certain age group, lives at least 5 years.
 - (a) If we observe 60 people from that group and assume independence, what is the probability that at least 56 of them live 5 years or more?
 - (b) Find and approximation to the result of part (a) using the Poisson distribution.