Assignment \#25

Due on Wednesday, April 23, 2014
Read Chapter 8 on Introduction to Estimation in the class lecture notes at http://pages.pomona.edu/~ajr04747/
Read Section 5.9 on The Gamma Distribution in DeGroot and Schervish.
Read Section 7.2 on The Chi-Square Distribution in DeGroot and Schervish.
Do the following problems

1. Let $X_{1}, X_{2}, \ldots, X_{n}$ denote a a random sample of size n from a $\operatorname{Normal}\left(\mu, \sigma^{2}\right)$ distribution. In this problem we consider two ways of estimating the variance σ^{2} based on the random sample.
(a) We can estimate σ^{2} by using the estimator $\widehat{\sigma}_{n}^{2}=\frac{1}{n} \sum_{k=1}^{n}\left(X_{k}-\bar{X}_{n}\right)^{2}$.

The estimator $\widehat{\sigma}_{n}^{2}$ is called the maximum likelihood estimator for σ^{2}.
Compute $E\left(\widehat{\sigma}_{n}^{2}\right)$. Is $\widehat{\sigma}_{n}^{2}$ an unbiased estimator for σ^{2} ?
(b) The sample variance, S_{n}^{2}, is defined by $S_{n}^{2}=\frac{1}{n-1} \sum_{k=1}^{n}\left(X_{k}-\bar{X}_{n}\right)^{2}$.

Compute $E\left(S_{n}^{2}\right)$. Is $\widehat{\sigma}_{n}^{2}$ an unbiased estimator for σ^{2} ?
2. The Gamma Function. The gamma function, $\Gamma(x)$, plays a very important role in the definitions a several probability distributions which are very useful in applications. It is defined as follows:

$$
\begin{equation*}
\Gamma(x)=\int_{0}^{\infty} t^{x-1} e^{-t} \mathrm{~d} t \quad \text { for all } x>0 \tag{1}
\end{equation*}
$$

Note: $\Gamma(x)$ can also be defined for negative values of x which are not integers; it is not defined at $x=0$. In this course, we will only consider $\Gamma(x)$ for $x>0$. Derive the following identities:
(a) $\Gamma(1)=1$.
(b) $\Gamma(x+1)=x \Gamma(x)$ for all $x>0$.
(c) $\Gamma(n+1)=n$! for all non-negative integers n.
3. Let $\Gamma:(0, \infty) \rightarrow \mathbb{R}$ be as defined in (1).
(a) Compute $\Gamma(1 / 2)$.

Hint: The change of variable $t=z^{2} / 2$ might come in handy. Recall that, if $Z \sim \operatorname{Normal}(0,1)$, then the pdf of Z is given by

$$
f_{z}(z)=\frac{e^{-z^{2} / 2}}{\sqrt{2 \pi}} \quad \text { for all } z \in \mathbb{R}
$$

(b) Compute $\Gamma(3 / 2)$.
4. Use the results of Problems 2 and 3 to derive the identity:

$$
\Gamma\left(\frac{k}{2}\right)=\frac{\Gamma(k) \sqrt{\pi}}{2^{k-1} \Gamma\left(\frac{k+1}{2}\right)}
$$

for every positive, odd integer k.
Suggestion: Proceed by induction on k.
5. Let α and β denote positive real numbers and define $f(x)=C x^{\alpha-1} e^{-x / \beta}$ for $x>0$ and $f(x)=0$ for $x \leqslant 0$, where C denotes a positive real number.
(a) Find the value of C so that f is the pdf for some distribution.
(b) For the value of C found in part (a), let f denote the pdf of a random variable X. Compute the mgf of X.

Hint: The pdf found in part (a) is related to the Gamma function.

