Assignment #26

Due on Friday, April 25, 2014

Read Chapter 8 on *Introduction to Estimation* in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Read Section 7.2 on The Chi-Square Distribution in DeGroot and Schervish.

Do the following problems

- 1. Let X and Y be independent $\chi^2(1)$ distributions. Put W = X + Y. Use moment generating functions to find the distribution of W. Give the pdf of W.
- 2. Let X and W be independent random variables with moment generating functions ψ_X and ψ_W , respectively, defined on a common interval around 0, $|t| < \delta$, for some $\delta > 0$. Put Y = X + W. Express the mgf of W in terms of the mgf of X and the mgf of Y, for $|t| < \delta$.
- 3. Assume that X and Y are independent random variables. Prove that X and Y^2 are also independent random variables.
- 4. Assume that X and Y are independent random variables. Let a and b denote real numbers with $a \neq 0$. Prove that X and aY + b are also independent random variables.
- 5. A we say that $x_{\scriptscriptstyle M}$ is a mode of continuous random variable, X, if

$$f_X(x_M) = \max_{-\infty < x < \infty} f_X(x). \tag{1}$$

That is, $f_X(x_M)$ gives the largest possible value of the pdf of X. If there is only one value of x_M for which (1) holds true, we call x_M the mode of the distribution. Assume that $X \sim \chi^2(4)$. Compute the mode of the distribution of X.