Exam 1 (Part I)

Name: \qquad
This is the in-class portion of Exam 1. This is a closed-book and closed-notes exam; you may consult only the "Special Distributions" handout.

Show all significant work and give reasons for all your answers. Use your own paper and/or the paper provided by the instructor. You have up to 50 minutes to work on the following 3 questions. Relax.

1. Let $(\mathcal{C}, \mathcal{B}, \operatorname{Pr})$ denote a probability space. Let A and B denote events in \mathcal{B} with $\operatorname{Pr}(A)=4 / 25$ and $\operatorname{Pr}(B)=3 / 25$. Assume that the probability of the joint occurrence of A and B is $1 / 25$.
(a) Compute the probability that at least one of the events A or B will occur.
(b) Explain why A and B are not independent events.
(c) Compute the probability of occurrence of event A, given that event B has occurred.
(d) Compute the probability of occurrence of event A, given that event B has not occurred.
(e) Compute the probability that event A will not occur, given that event B has occurred.
2. A bowl contains 4 chips of the same size and shape. One and only one of these chips is red. In an experiment, chips are drawn at random from the bowl, one at a time and without replacement, until the red chip is drawn. Let X denote the number of draws needed to get the red chip.
(a) Compute the pmf, p_{X}, of X and sketch it.
(b) Compute the cumulative distribution function of X and sketch it.
3. Let $X \sim$ Exponential(1) and define $Y=\frac{1}{X}$.
(a) Compute the cdf, F_{Y}, for Y in terms of the cdf for X.
(b) Compute the pdf of Y.
