Exam 1 (Part I)

Friday, February 21, 2014

Name: ____

This is the in-class portion of Exam 1. This is a closed-book and closed-notes exam; you may consult only the "Special Distributions" handout.

Show all significant work and give reasons for all your answers. Use your own paper and/or the paper provided by the instructor. You have up to 50 minutes to work on the following 3 questions. Relax.

- 1. Let $(\mathcal{C}, \mathcal{B}, \Pr)$ denote a probability space. Let A and B denote events in \mathcal{B} with $\Pr(A) = 4/25$ and $\Pr(B) = 3/25$. Assume that the probability of the joint occurrence of A and B is 1/25.
 - (a) Compute the probability that at least one of the events A or B will occur.
 - (b) Explain why A and B are not independent events.
 - (c) Compute the probability of occurrence of event A, given that event B has occurred.
 - (d) Compute the probability of occurrence of event A, given that event B has **not** occurred.
 - (e) Compute the probability that event A will not occur, given that event B has occurred.
- 2. A bowl contains 4 chips of the same size and shape. One and only one of these chips is red. In an experiment, chips are drawn at random from the bowl, one at a time and without replacement, until the red chip is drawn. Let X denote the number of draws needed to get the red chip.
 - (a) Compute the pmf, p_X , of X and sketch it.
 - (b) Compute the cumulative distribution function of X and sketch it.
- 3. Let $X \sim \text{Exponential}(1)$ and define $Y = \frac{1}{X}$.
 - (a) Compute the cdf, F_Y , for Y in terms of the cdf for X.
 - (b) Compute the pdf of Y.