Assignment #1

Due on Wednesday, January 29, 2014

Read Section 2.1 on *Modeling Fluid Flow* in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Read pages 1–4 in the text.

Do the following problems

1. Let R denote an open subset of \mathbb{R}^3 and $f\colon R\to\mathbb{R}$ denote a continuous function. Suppose that

$$\iiint_B f \ dV = 0$$

for all bounded subsets, B, of R with smooth boundary. Show that f(x, y, z) = 0 for all $(x, y, z) \in R$.

2. Let R be as in Problem 1 and $\overrightarrow{F}: R \to \mathbb{R}^3$ denote a continuous vector field. Suppose that

$$\iiint_B \overrightarrow{F} \, dV = 0,\tag{1}$$

for all bounded subsets, B, of R with smooth boundary, where the 0 on the right-hand side of (1) denotes the zero vector in \mathbb{R}^3 . Show that $\overrightarrow{F}(x, y, z) = 0$ for all $(x, y, z) \in R$.

3. Let R denote an open subset of \mathbb{R}^3 and $f: R \to \mathbb{R}$ denote a C^1 function. Let B denote a bounded subset of R with smooth boundary ∂B . Apply the divergence theorem to show that

$$\iiint_{B} \frac{\partial f}{\partial x} \, dV = \iint_{\partial B} f n_1 \, dA,\tag{2}$$

where n_1 is the first component of the outward unit normal, \vec{n} , to the boundary of B.

Write analogous expressions to that in (2) involving $\frac{\partial f}{\partial y}$ and $\frac{\partial f}{\partial z}$.

4. In the lecture notes we derived the one-dimensional continuity equation,

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x}(\rho u) = 0, \tag{3}$$

Math 182. Rumbos

for x in some interval $I \subseteq \mathbb{R}$ and for all $t \in \mathbb{R}$. In (3) we are assuming that u and ρ are C^1 functions of (x, t), for $x \in I$ and $t \in \mathbb{R}$.

For the special case in which u is constant (say, u(x, t) = c for all $x \in I$ and all t), (3) becomes

$$\frac{\partial \rho}{\partial t} + c \frac{\partial \rho}{\partial x} = 0, \quad x \in I, t \in \mathbb{R}.$$
(4)

Assume that $f : \mathbb{R} \to \mathbb{R}$ is a C^1 function. Verify that

$$\rho(x,t) = f(x-ct), \quad x \in \mathbb{R}, t \in \mathbb{R}.$$

solves the PDE in (4) for $I = \mathbb{R}$.

5. Suppose that u and ρ are solutions to the system of PDEs

$$\begin{cases}
\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x}(\rho u) = 0, \quad x \in \mathbb{R}, t \in \mathbb{R}; \\
\frac{\partial u}{\partial x} = 0, \quad x \in \mathbb{R}, t \in \mathbb{R}
\end{cases}$$
(5)

(a) Verify that ρ solves the PDE

$$\frac{\partial \rho}{\partial t} + u \frac{\partial \rho}{\partial x} = 0, \quad x \in \mathbb{R}, t \in \mathbb{R}.$$
(6)

(b) Assume that u is known, ρ solves (6) and that x = x(t) is a solution to the ordinary differential equation

$$\frac{dx}{dt} = u(x,t), \quad t \in \mathbb{R}.$$

Compute $\frac{d}{dt}[\rho(x(t), t)]$, for all $t \in \mathbb{R}$. What do you conclude?