Assignment \#1

Due on Wednesday, January 29, 2014
Read Section 2.1 on Modeling Fluid Flow in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Read pages 1-4 in the text.
Do the following problems

1. Let R denote an open subset of \mathbb{R}^{3} and $f: R \rightarrow \mathbb{R}$ denote a continuous function. Suppose that

$$
\iiint_{B} f d V=0
$$

for all bounded subsets, B, of R with smooth boundary. Show that $f(x, y, z)=0$ for all $(x, y, z) \in R$.
2. Let R be as in Problem 1 and $\vec{F}: R \rightarrow \mathbb{R}^{3}$ denote a continuous vector field. Suppose that

$$
\begin{equation*}
\iiint_{B} \vec{F} d V=0 \tag{1}
\end{equation*}
$$

for all bounded subsets, B, of R with smooth boundary, where the 0 on the right-hand side of (1) denotes the zero vector in \mathbb{R}^{3}. Show that $\vec{F}(x, y, z)=0$ for all $(x, y, z) \in R$.
3. Let R denote an open subset of \mathbb{R}^{3} and $f: R \rightarrow \mathbb{R}$ denote a C^{1} function. Let B denote a bounded subset of R with smooth boundary ∂B. Apply the divergence theorem to show that

$$
\begin{equation*}
\iiint_{B} \frac{\partial f}{\partial x} d V=\iint_{\partial B} f n_{1} d A \tag{2}
\end{equation*}
$$

where n_{1} is the first component of the outward unit normal, \vec{n}, to the boundary of B.
Write analogous expressions to that in (2) involving $\frac{\partial f}{\partial y}$ and $\frac{\partial f}{\partial z}$.
4. In the lecture notes we derived the one-dimensional continuity equation,

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}+\frac{\partial}{\partial x}(\rho u)=0 \tag{3}
\end{equation*}
$$

for x in some interval $I \subseteq \mathbb{R}$ and for all $t \in \mathbb{R}$. In (3) we are assuming that u and ρ are C^{1} functions of (x, t), for $x \in I$ and $t \in \mathbb{R}$.
For the special case in which u is constant (say, $u(x, t)=c$ for all $x \in I$ and all t), (3) becomes

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}+c \frac{\partial \rho}{\partial x}=0, \quad x \in I, t \in \mathbb{R} \tag{4}
\end{equation*}
$$

Assume that $f: \mathbb{R} \rightarrow \mathbb{R}$ is a C^{1} function. Verify that

$$
\rho(x, t)=f(x-c t), \quad x \in \mathbb{R}, t \in \mathbb{R}
$$

solves the PDE in (4) for $I=\mathbb{R}$.
5. Suppose that u and ρ are solutions to the system of PDEs

$$
\left\{\begin{align*}
\frac{\partial \rho}{\partial t}+\frac{\partial}{\partial x}(\rho u) & =0, \quad x \in \mathbb{R}, t \in \mathbb{R} \tag{5}\\
\frac{\partial u}{\partial x} & =0, \quad x \in \mathbb{R}, t \in \mathbb{R}
\end{align*}\right.
$$

(a) Verify that ρ solves the PDE

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}+u \frac{\partial \rho}{\partial x}=0, \quad x \in \mathbb{R}, t \in \mathbb{R} \tag{6}
\end{equation*}
$$

(b) Assume that u is known, ρ solves (6) and that $x=x(t)$ is a solution to the ordinary differential equation

$$
\frac{d x}{d t}=u(x, t), \quad t \in \mathbb{R}
$$

Compute $\frac{d}{d t}[\rho(x(t), t)]$, for all $t \in \mathbb{R}$. What do you conclude?

