Assignment \#10

Due on Wednesday, February 26, 2014
Read Chapter 3 on Classification of PDEs in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Read pages 1-13 in the text.
Do the following problems

1. Laplacian of Radially Symmetric Functions in \mathbb{R}^{3}. A function $u: \mathbb{R}^{3} \rightarrow \mathbb{R}$ is said to be radially symmetric if there exists a real-valued function of a single variable, $f:[0, \infty) \rightarrow \mathbb{R}$, such that $u(x, y, z)=f\left(\sqrt{x^{2}+y^{2}+z^{2}}\right)$, for $\operatorname{all}(x, y, z) \in \mathbb{R}^{3}$. Assume that f is twice differentiable and set $r=\sqrt{x^{2}+y^{2}+z^{2}}$. Verify that $\Delta u=f^{\prime \prime}(r)+\frac{2}{r} f^{\prime}(r)$, for $r>0$.
2. Radially Symmetric Solutions to Laplace's Equation in \mathbb{R}^{3}. Let R denote three-dimensional space without the origin; i.e., $R=\mathbb{R}^{3} \backslash\{(0,0,0)\}$.
Find all radially symmetric solutions of the PDE problem: $\Delta u=0$ in R.
Suggestion: Assume that $u(x, y, z)=f(r)$, where f is twice differentiable and $r=\sqrt{x^{2}+y^{2}+z^{2}}$; use the expression for Δu that you found in Problem 2.
3. Harmonic Functions A C^{2} solution, u, to Laplace's equation, $\Delta u=0$, is said to be harmonic. Explain why the only radially symmetric harmonic functions in \mathbb{R}^{3} are the constant functions.
4. For positive numbers, r_{1} and r_{2}, with $r_{1}<r_{2}$, define

$$
R=\left\{(x, y, z) \in \mathbb{R}^{3} \mid r_{1}<\sqrt{x^{2}+y^{2}+z^{2}}<r_{2}\right\} .
$$

Denote by S_{r} the sphere of radius r centered at the origin.
Solve the boundary value problem: $\Delta u=0$ in $R, u=a$ on $S_{r_{1}}, u=b$ on $S_{r_{2}}$, where a and b are real constants.
Suggestion: Look for radially symmetric solutions.
5. The following linear, second order PDEs,

$$
y u_{x x}+2 x u_{x y}+y u_{y y}=0
$$

changes type according to the region in the place in which it is considered.
Determine the sets in the plane on which the PDE is hyperbolic, parabolic or elliptic.

