Assignment #10

Due on Wednesday, February 26, 2014

Read Chapter 3 on *Classification of PDEs* in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Read pages 1-13 in the text.

Do the following problems

- 1. Laplacian of Radially Symmetric Functions in \mathbb{R}^3 . A function $u: \mathbb{R}^3 \to \mathbb{R}$ is said to be radially symmetric if there exists a real-valued function of a single variable, $f: [0, \infty) \to \mathbb{R}$, such that $u(x, y, z) = f(\sqrt{x^2 + y^2 + z^2})$, for $\operatorname{all}(x, y, z) \in \mathbb{R}^3$. Assume that f is twice differentiable and set $r = \sqrt{x^2 + y^2 + z^2}$. Verify that $\Delta u = f''(r) + \frac{2}{r}f'(r)$, for r > 0.
- 2. Radially Symmetric Solutions to Laplace's Equation in \mathbb{R}^3 . Let R denote three–dimensional space without the origin; i.e., $R = \mathbb{R}^3 \setminus \{(0, 0, 0)\}$.

Find all radially symmetric solutions of the PDE problem: $\Delta u = 0$ in R.

Suggestion: Assume that u(x, y, z) = f(r), where f is twice differentiable and $r = \sqrt{x^2 + y^2 + z^2}$; use the expression for Δu that you found in Problem 2.

- 3. Harmonic Functions A C^2 solution, u, to Laplace's equation, $\Delta u = 0$, is said to be harmonic. Explain why the only radially symmetric harmonic functions in \mathbb{R}^3 are the constant functions.
- 4. For positive numbers, r_1 and r_2 , with $r_1 < r_2$, define

$$R = \{ (x, y, z) \in \mathbb{R}^3 \mid r_1 < \sqrt{x^2 + y^2 + z^2} < r_2 \}.$$

Denote by S_r the sphere of radius r centered at the origin.

Solve the boundary value problem: $\Delta u = 0$ in R, u = a on S_{r_1} , u = b on S_{r_2} , where a and b are real constants.

Suggestion: Look for radially symmetric solutions.

5. The following linear, second order PDEs,

$$y \ u_{xx} + 2x \ u_{xy} + y \ u_{yy} = 0,$$

changes type according to the region in the place in which it is considered.

Determine the sets in the plane on which the PDE is hyperbolic, parabolic or elliptic.