Assignment #11

Due on Monday, March 3, 2014

Read Chapter 3 on *Classification of PDEs* in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Read Chapter 4 on *Solving PDEs* in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Read pages 1-13 in the text.

Do the following problems

1. The Minimal Surface Equation. Show that the minimal surface equation,

$$(1 + u_y^2)u_{xx} - 2u_x u_y u_{xy} + (1 + u_x^2)u_{yy} = 0,$$
(1)

is an elliptic PDE.

2. Radially Symmetric Solutions to the Minimal Surface PDE. Suppose we are looking for radially symmetric solutions to the PDE in (1); that is, we look for solutions to (1) of the form: $u(x, y) = f(\sqrt{x^2 + y^2})$, for $(x, y) \in \mathbb{R}^2$, where $f: [0, \infty) \to \mathbb{R}$ is a continuous function that is twice–differentiable in $(0, \infty)$.

Suppose that u(x, y) = f(r), where $r = \sqrt{x^2 + y^2}$, solves the minimal surface PDE in (1). Derive the ODE that f must satisfy.

3. The Laplacian in Polar Coordinates. Let $r = \sqrt{x^2 + y^2}$ and $\theta = \arctan\left(\frac{y}{x}\right)$; so that $x = r \cos \theta$ and $y = r \sin \theta$. Suppose that u solves Laplace's equation,

$$u_{xx} + u_{yy} = 0,$$

in \mathbb{R}^2 , and put $v(r,\theta) = u(r\cos\theta, r\sin\theta)$. Verify that v solves the PDE

$$\frac{\partial^2 v}{\partial r^2} + \frac{1}{r} \frac{\partial v}{\partial r} + \frac{1}{r^2} \frac{\partial^2 v}{\partial \theta^2} = 0, \quad \text{ for } r > 0, -\pi < \theta \leqslant \pi.$$

Spring 2014 2

Math 182. Rumbos

4. The Gradient in Polar Coordinates. Find an expression for the twodimensional gradient of a C^2 function in \mathbb{R}^2 in polar coordinates of the form

$$\nabla f = \alpha(r,\theta) \frac{\partial f}{\partial r} \overrightarrow{e}_r + \beta(r,\theta) \frac{\partial f}{\partial \theta} \overrightarrow{e}_\theta,$$

where \overrightarrow{e}_r and $\overrightarrow{e}_{\theta}$ are the unit vectors

$$\overrightarrow{e}_r = (\cos\theta, \sin\theta)$$
 and $\overrightarrow{e}_\theta = (-\sin\theta, \cos\theta),$

and α and β are functions of r and θ .

5. The Dirichlet Integral in Polar Coordinates. Express the Dirichlet integral,

$$\mathcal{D}(u) = \frac{1}{2} \iint_{R} |\nabla u|^2 \, dx dy,$$

in terms of polar coordinates.