Assignment \#11

Due on Monday, March 3, 2014
Read Chapter 3 on Classification of PDEs in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Read Chapter 4 on Solving PDEs in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Read pages 1-13 in the text.
Do the following problems

1. The Minimal Surface Equation. Show that the minimal surface equation,

$$
\begin{equation*}
\left(1+u_{y}^{2}\right) u_{x x}-2 u_{x} u_{y} u_{x y}+\left(1+u_{x}^{2}\right) u_{y y}=0 \tag{1}
\end{equation*}
$$

is an elliptic PDE.
2. Radially Symmetric Solutions to the Minimal Surface PDE. Suppose we are looking for radially symmetric solutions to the PDE in (1); that is, we look for solutions to (1) of the form: $u(x, y)=f\left(\sqrt{x^{2}+y^{2}}\right)$, for $(x, y) \in \mathbb{R}^{2}$, where $f:[0, \infty) \rightarrow \mathbb{R}$ is a continuous function that is twice-differentiable in $(0, \infty)$.
Suppose that $u(x, y)=f(r)$, where $r=\sqrt{x^{2}+y^{2}}$, solves the minimal surface PDE in (1). Derive the ODE that f must satisfy.
3. The Laplacian in Polar Coordinates. Let $r=\sqrt{x^{2}+y^{2}}$ and $\theta=\arctan \left(\frac{y}{x}\right)$; so that $x=r \cos \theta$ and $y=r \sin \theta$. Suppose that u solves Laplace's equation,

$$
u_{x x}+u_{y y}=0,
$$

in \mathbb{R}^{2}, and put $v(r, \theta)=u(r \cos \theta, r \sin \theta)$. Verify that v solves the PDE

$$
\frac{\partial^{2} v}{\partial r^{2}}+\frac{1}{r} \frac{\partial v}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} v}{\partial \theta^{2}}=0, \quad \text { for } r>0,-\pi<\theta \leqslant \pi
$$

4. The Gradient in Polar Coordinates. Find an expression for the twodimensional gradient of a C^{2} function in \mathbb{R}^{2} in polar coordinates of the form

$$
\nabla f=\alpha(r, \theta) \frac{\partial f}{\partial r} \vec{e}_{r}+\beta(r, \theta) \frac{\partial f}{\partial \theta} \vec{e}_{\theta}
$$

where \vec{e}_{r} and \vec{e}_{θ} are the unit vectors

$$
\vec{e}_{r}=(\cos \theta, \sin \theta) \quad \text { and } \quad \vec{e}_{\theta}=(-\sin \theta, \cos \theta)
$$

and α and β are functions of r and θ.
5. The Dirichlet Integral in Polar Coordinates. Express the Dirichlet integral,

$$
\mathcal{D}(u)=\frac{1}{2} \iint_{R}|\nabla u|^{2} d x d y
$$

in terms of polar coordinates.

