Assignment \#12

Due on Wednesday, March 5, 2014
Read Section 3.1 on Using Characteristic Curves in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Read Appendix A, on First-Order Equations, in Chapter 3 of the text, pp. 277-308.
Do the following problems

1. Find a solution to the initial value problem

$$
\left\{\begin{aligned}
\frac{\partial u}{\partial t}+\frac{\partial u}{\partial x} & =0, \quad x \in \mathbb{R}, t>0 \\
u(x, 0) & =f(x), \quad x \in \mathbb{R}
\end{aligned}\right.
$$

where $f(x)=1-x^{2}$ for $-1 \leqslant x \leqslant 1, f(x)=0$ for $|x|>1$. For various values of t, sketch the solution u as a function of x.
2. Find an implicit solution to the initial value problem

$$
\left\{\begin{aligned}
\frac{\partial u}{\partial t}-x u \frac{\partial u}{\partial x} & =0, & & x \in \mathbb{R}, t>0 \\
u(x, 0) & =x, & & x \in \mathbb{R}
\end{aligned}\right.
$$

3. In this problem we consider the equation $\frac{\partial u}{\partial t}+c \frac{\partial u}{\partial x}=0$, where c is a real constant not equal to 0 , in the region of the $x t$-plane determined by $x>0$ and $t>0$, and subject to the boundary condition

$$
\begin{cases}u(x, 0)=f(x) & x>0 \\ u(0, t)=g(t) & t>0\end{cases}
$$

where f and g are given continuous functions of a single variable.
(a) Show that the boundary curve is not a characteristic of the equation.
(b) If $c>0$, determine a solution of the problem.
(c) Show that if $c<0$, then the problem in general cannot be solved.
4. Solve the initial value problem

$$
\left\{\begin{aligned}
\frac{\partial u}{\partial t}+x \frac{\partial u}{\partial x} & =1, & x \in \mathbb{R}, t>0 \\
u(x, 0) & =e^{x}, & x \in \mathbb{R}
\end{aligned}\right.
$$

5. Find the general solution to the linear partial differential equation

$$
t \frac{\partial u}{\partial t}+x \frac{\partial u}{\partial x}=n u
$$

where n is a positive integer.

