Assignment \#13

Due on Monday, March 31, 2014
Read Section 4.2 on Using Symmetry to Solve PDEs in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Read Section A.2, on Self-Similar Solutions, in the text, pp. 287-294.
Do the following problems

1. Assume that u solves Laplace's equation in \mathbb{R}^{2}. For fixed (\bar{x}, \bar{y}) in \mathbb{R}^{2}, define

$$
\left\{\begin{array}{l}
\xi=x-\bar{x} \tag{1}\\
\eta=y-\bar{y}
\end{array}\right.
$$

and set

$$
v(\xi, \eta)=u(x, y)
$$

where x and y are given in terms of ξ and η by inverting the transformation equations in (1). Apply the Chain Rule to verify that

$$
v_{\xi \xi}+v_{\eta \eta}=0 .
$$

We say that Laplace's equation is translation invariant.
2. In class and in the lecture notes we showed that dilation-invariant solutions of the one-dimensional heat equation,

$$
u_{t}=k u_{x x}, \quad \text { for } x \in \mathbb{R} \text { and } t>0,
$$

where k is the thermal diffusivity, are of the form

$$
\begin{equation*}
u(x, t)=c_{1} \int_{0}^{x / \sqrt{t}} e^{-z^{2} / 4 k} d z+c_{2}, \quad \text { for } x \in \mathbb{R} \text { and } t>0 \tag{2}
\end{equation*}
$$

and constants c_{1} and c_{2}.
Use the formula in (2) to find a solution to the initial-boundary-value problem

$$
\begin{cases}u_{t}-k u_{x x}=0, & \text { for } x>0, t>0 \tag{3}\\ u(x, 0)=0, & \text { for all } x>0 \\ u(0, t)=1, & \text { for all } t>0\end{cases}
$$

Note: The initial condition in (3) is to be understood as

$$
\lim _{t \rightarrow 0^{+}} u(x, t)=0, \quad \text { for all } x>0
$$

3. Verify that the function

$$
\begin{equation*}
p(x, t)=\frac{e^{-x^{2} / 4 D t}}{\sqrt{4 \pi D t}}, \quad \text { for } x \in \mathbb{R} \text { and } t>0 \tag{4}
\end{equation*}
$$

solves the one-dimensional diffusion equation

$$
\frac{\partial u}{\partial t}=D \frac{\partial^{2} u}{\partial x^{2}}, \quad \text { for } x \in \mathbb{R} \text { and } t>0
$$

4. Let p be as defined in (4). Show that

$$
\int_{-\infty}^{\infty} p(x-y, t) d y=1, \quad \text { for all } x \in \mathbb{R} \text { and all } t>0
$$

5. Let p be as defined in (4). Show the following:
(a) If $x \neq 0$, then $\lim _{t \rightarrow 0^{+}} p(x, t)=0$.
(b) If $x=0$, then $\lim _{t \rightarrow 0^{+}} p(x, t)=+\infty$.
