Assignment \#15

Due on Friday, April 11, 2014
Read Section 5.2 on Solving the Dirichlet Problem in the Unit Disk in the class lecture notes athttp://pages.pomona.edu/~ajr04747/

Read Section 2.1, on Separations of Variable, in the text, pp. 141-167.
Read Section 2.5, on Fourier Series and Green's Functions, in the text, pp. 182-194.
Do the following problems

1. Let R denote the open square $\left\{(x, y) \in \mathbb{R}^{2} \mid 0<x<\pi, 0<y<\pi\right\}$. Find all values of λ for which the following BVP

$$
\left\{\begin{align*}
-\left(u_{x x}+u_{y y}\right) & =\lambda u \quad \text { in } R ; \tag{1}\\
u & =0, \quad \text { on } \partial R,
\end{align*}\right.
$$

has nontrivial solutions. Those values are called eigenvalues of problem (1). For each eigenvalue give the corresponding nontrivial solutions; these are called eigenfuctions.
2. Let Ω denote a path-connected, bounded open subset of \mathbb{R}^{2} with smooth boundary $\partial \Omega$.
Suppose that the BVP

$$
\left\{\begin{aligned}
-\left(u_{x x}+u_{y y}\right) & =\lambda u \quad \text { in } \Omega \\
u & =0, \quad \text { on } \partial \Omega
\end{aligned}\right.
$$

has a nontrivial solution. Show that λ must be positive.
3. Green's Second Identity. Use the result of Problem 4 in Assignment $\# 6$ to derive Green's Second Identity:
Let Ω denote an open region in \mathbb{R}^{3} with smooth boundary $\partial \Omega$ and let u and v denote scalar functions in $C^{2}(\Omega) \cap C(\bar{\Omega})$. Then,

$$
\iiint_{\Omega}[u \Delta v-v \Delta u] d V=\iint_{\partial \Omega}\left[u \frac{\partial v}{\partial n}-v \frac{\partial u}{\partial n}\right] d A
$$

where $\frac{\partial u}{\partial n}$ denotes the directional derivative of u in the direction of the outward unit normal on the boundary of Ω.
State the two-dimensional analogue of this result.
4. Eigenvalues and Eigenfunctions of the Laplacian. Let Ω denote an open, path-connected, bounded subset of \mathbb{R}^{2} or \mathbb{R}^{3} with smooth boundary $\partial \Omega$. If the BVP

$$
\left\{\begin{align*}
-\Delta u & =\lambda u \quad \text { in } \Omega \tag{2}\\
u & =0, \quad \text { on } \partial \Omega
\end{align*}\right.
$$

has nontrivial solutions, we call λ and eigenvalue of (2); a corresponding nontrivial solution is called an eigenfunction for that value of λ.

Use Green's Second Identity (derived in Problem 3) to shown that if u and v are eigenfunctions corresponding to distinct eigenvalues of (2), then

$$
\int_{\Omega} u v=0 .
$$

5. Green's Function for the Half Plane. Define $G: \mathbb{R} \times(0, \infty) \rightarrow \mathbb{R}$ by

$$
G(x, y)=\frac{1}{\pi} \frac{y}{x^{2}+y^{2}}, \quad \text { for } x \in \mathbb{R} \text { and } y>0
$$

Verify the following properties of G :
(a) $\Delta G=0$ in $\mathbb{R} \times(0, \infty)=\left\{(x, y) \in \mathbb{R}^{2} \mid-\infty<x<\infty, y>0\right\}$, the upper half plane.
(b) $\int_{-\infty}^{\infty} G(x-s, y) d s=1$ for all $x \in \mathbb{R}$ and all $y>0$.
(c) $\lim _{y \rightarrow 0^{+}} G(x, y)=0$ for $x \neq 0$ and $\lim _{y \rightarrow 0^{+}} G(x, y)=+\infty$ for $x=0$.

