Assignment #16

Due on Wednesday, April 16, 2014

Read Section 5.2 on *Solving the Dirichlet Problem in the Unit Disk* in the class lecture notes athttp://pages.pomona.edu/~ajr04747/

Read Section 2.1, on Separations of Variable, in the text, pp. 141–167.

Read Section 2.5, on Fourier Series and Green's Functions, in the text, pp. 182–194.

Do the following problems

1. Derive the following integrations identities:

$$\int_{-\pi}^{\pi} \sin(n\theta) \cos(m\theta) \ d\theta = 0, \quad \text{for all } m, n = 1, 2, 3, \dots;$$
$$\int_{-\pi}^{\pi} \cos(n\theta) \cos(m\theta) \ d\theta = \begin{cases} 0, & \text{if } m \neq n; \\ \pi, & \text{if } m = n; \end{cases}$$

and

$$\int_{-\pi}^{\pi} \sin(n\theta) \sin(m\theta) \ d\theta = \begin{cases} 0, & \text{if } m \neq n; \\ \pi, & \text{if } m = n. \end{cases}$$

2. The Dirichlet Problem for the Upper Half Plane. Let G be the function defined in Problem 5 of Assignment #15:

$$G(x,y) = \frac{1}{\pi} \frac{y}{x^2 + y^2}, \quad \text{for } x \in \mathbb{R} \text{ and } y > 0.$$

Given a piece–wise continuous function, $f : \mathbb{R} \to \mathbb{R}$, that is bounded, define

$$u(x,y) = \int_{-\infty}^{\infty} G(x-s,y)f(s) \, ds, \quad \text{for } x \in \mathbb{R} \text{ and } y > 0.$$
(1)

Show that u given in (1) is well defined as function from the upper-half place to \mathbb{R} and verify that u solves

$$u_{xx} + u_{yy} = 0$$
, for $x \in \mathbb{R}$ and $y > 0$.

3. The Dirichlet Problem for the Upper Half Plane (Continued). Let u be as defined in (1) in Problem 2, where $f \colon \mathbb{R} \to \mathbb{R}$ is a bounded, continuous function on \mathbb{R} .

Prove that

$$\lim_{y \to 0^+} u(x, y) = f(x), \quad \text{ for all } x \in \mathbb{R}.$$

Deduce that the Dirichlet problem for the upper-half plane,

$$\begin{cases} u_{xx} + u_{yy} = 0, & \text{for } x \in \mathbb{R}, y > 0; \\ u(x,0) = f(x), & \text{for } x \in \mathbb{R}, \end{cases}$$

has a solution for every continuous and bounded function $f \colon \mathbb{R} \to \mathbb{R}$.

4. The Poisson Kernel for the Unit Disk. Let D_1 denote the unit disk in \mathbb{R}^2 . The function, $P: D_1 \to \mathbb{R}$, defined in polar coordinates by

$$P(r,\theta) = \frac{1}{2\pi} \frac{1-r^2}{1-2r\cos\theta + r^2}, \quad \text{for } 0 \le r < 1 \text{ and } -\pi < \theta \le \pi, \quad (2)$$

is called the Poisson kernel for the unit disk.

Verify that P solves Laplace's equation in D_1 .

5. The Poisson Kernel for the Unit Disk (Continued). Let P denote the Poisson kernel for the unit disk defined in (2). Verify that

$$\int_{-\pi}^{\pi} P(r,\theta) \ d\theta = 1, \quad \text{ for all } 0 \leqslant r < 1.$$