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Assignment #2
Due on Friday, January 31, 2014

Read Section 2.1 on Modeling Fluid Flow in the class lecture notes at
http://pages.pomona.edu/ ajr04747/

Background and Definitions
e Pathlines. For a fluid of C! density p flowing in a region R of R? according to

a C! velocity field @ = (uy,us,u3), the pathlines are solutions to the system of
ordinary differential equations
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e Material Derivative. Given a C! scalar field, g, the time derivative of ¢ along
the pathlines,

d _dg dx 99 dy Odg dz Og

0 0 0 0
= ul—g+U2—g+U3—g+—g

ox dy 0z Ot

D
is called the material derivative of g, and is denoted by Fg; so that
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where Vg = (%, g—z, %) is the gradient of g.

The material derivative of a C! vector field 8 = (91,92, 93), is
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which can be written as
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Do the following problems

1. Let f and g denote C! scalar fields defined in R. Use the definition of the
material derivative in (2) and (3) to verify that
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2. Let f denote a C! scalar field and 8 a C! vector field defined in R. Use the
definition of the material derivative in (4) and (5), and the result in Problem 1
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to derive an expression for E[ f 8]
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4. Let ? and 8 denote C! vector fields in R. Compute

S @(0), (1), 2(),8) - (@ (t), y(0), 2(0), 1),
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and use your result to derive and expression for E[? : 8]
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5. Compute E[Hﬁﬂz], where ||@]| denotes the Euclidean norm of .



