Assignment #2

Due on Friday, January 31, 2014

Read Section 2.1 on *Modeling Fluid Flow* in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Background and Definitions

• **Pathlines**. For a fluid of C^1 density ρ flowing in a region R of \mathbb{R}^3 according to a C^1 velocity field $\vec{u} = (u_1, u_2, u_3)$, the pathlines are solutions to the system of ordinary differential equations

$$\begin{cases} \frac{dx}{dt} = u_1(x(t), y(t), z(t), t); \\ \frac{dy}{dt} = u_2(x(t), y(t), z(t), t); \\ \frac{dz}{dt} = u_3(x(t), y(t), z(t), t), \end{cases}$$
(1)

• Material Derivative. Given a C^1 scalar field, g, the time derivative of g along the pathlines,

$$\frac{d}{dt}[g(x(t), y(t), z(t), t)] = \frac{\partial g}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial g}{\partial y} \cdot \frac{dy}{dt} + \frac{\partial g}{\partial z} \cdot \frac{dz}{dt} + \frac{\partial g}{\partial t}$$

$$= u_1 \frac{\partial g}{\partial x} + u_2 \frac{\partial g}{\partial y} + u_3 \frac{\partial g}{\partial z} + \frac{\partial g}{\partial t},$$
(2)

is called the **material derivative** of g, and is denoted by $\frac{Dg}{Dt}$; so that

$$\frac{Dg}{Dt} = \frac{\partial g}{\partial t} + \vec{u} \cdot \nabla g, \tag{3}$$

where $\nabla g = \left(\frac{\partial g}{\partial x}, \frac{\partial g}{\partial y}, \frac{\partial g}{\partial z}\right)$ is the gradient of g.

The material derivative of a C^1 vector field $\overrightarrow{G} = (g_1, g_2, g_3)$, is

$$\frac{D\overrightarrow{G}}{Dt} = \left(\frac{Dg_1}{Dt}, \frac{Dg_2}{Dt}, \frac{Dg_3}{Dt}\right),\tag{4}$$

Math 182. Rumbos

which can be written as

$$\frac{D\overrightarrow{G}}{Dt} = \frac{\partial \overrightarrow{G}}{\partial t} + \vec{u} \cdot \nabla \overrightarrow{G}.$$
(5)

Do the following problems

1. Let f and g denote C^1 scalar fields defined in R. Use the definition of the material derivative in (2) and (3) to verify that

$$\frac{D}{Dt}[fg] = f\frac{Dg}{Dt} + g\frac{Df}{Dt}.$$

- 2. Let f denote a C^1 scalar field and \overrightarrow{G} a C^1 vector field defined in R. Use the definition of the material derivative in (4) and (5), and the result in Problem 1 to derive an expression for $\frac{D}{Dt}[f\overrightarrow{G}]$.
- 3. Compute $\frac{D\vec{u}}{Dt}$.
- 4. Let \overrightarrow{F} and \overrightarrow{G} denote C^1 vector fields in R. Compute

$$\frac{d}{dt}[\overrightarrow{F}(x(t), y(t), z(t), t) \cdot \overrightarrow{G}(x(t), y(t), z(t), t)],$$

and use your result to derive and expression for $\frac{D}{Dt}[\overrightarrow{F}\cdot\overrightarrow{G}]$.

5. Compute $\frac{D}{Dt}[\|\vec{u}\|^2]$, where $\|\vec{u}\|$ denotes the Euclidean norm of \vec{u} .