Assignment \#6

Due on Friday, February 14, 2014

Read Section 2.3 on Variational Problems in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Read on Variational Principles and Euler Equations, pages 117-120 in the text.

Background and Definitions

The Support of a Function. Let R be an open set in \mathbb{R}^{n}, where n could be 1,2 or 3. The support of a function $\varphi: R \rightarrow \mathbb{R}$ is the closure of the set $\{\vec{x} \in R \mid \varphi(\vec{x}) \neq 0\}$. The support of φ is denoted by $\operatorname{supp}(f)$, so that

$$
\operatorname{supp}(f)=\overline{\{\vec{x} \in R \mid \varphi(\vec{x}) \neq 0\}}
$$

Do the following problems

1. In assignment $\# 5$ you showed how to construct a function $\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that

$$
\operatorname{supp}(\varphi)=\overline{B_{1}(0)}=\left\{\vec{x} \in \mathbb{R}^{n}| | \vec{x} \mid \leqslant 1\right\}
$$

the closed ball of radius 1 around the origin in \mathbb{R}^{n}. Furthermore, $\varphi>0$ in $B_{1}(0)$.
Given an open region, R, in \mathbb{R}^{n}, and $\vec{x}_{o} \in R$, show that there exists $\delta>0$ and a function $\varphi_{o} \in C_{c}^{\infty}(R)$ such that

$$
\operatorname{supp}\left(\varphi_{o}\right)=\overline{B_{\delta}\left(\vec{x}_{o}\right)}=\left\{\vec{x} \in \mathbb{R}^{n}| | \vec{x}-\vec{x}_{o} \mid \leqslant \delta\right\} \subset R ;
$$

that is, $\operatorname{supp}\left(\varphi_{o}\right)$ is the closed ball of radius δ around \vec{x}_{o}, and this is contained in R. Furthermore, $\varphi_{o}>0$ in $B_{\delta}\left(\vec{x}_{o}\right)$.
2. Let R denote an open subset of \mathbb{R}^{2} and $f: R \rightarrow \mathbb{R}$ denote a continuous function. Suppose that

$$
\iint_{R} f(x, y) \varphi(x, y) d x d y=0, \quad \text { for all } \varphi \in C_{c}^{\infty}(R)
$$

Show that $f(x, y)=0$ for all $(x, y) \in R$.
State analogues of this result for open subsets of \mathbb{R} and \mathbb{R}^{3}.
3. Use the Divergence Theorem to derive the following "integration by parts" result: Let R denote a bounded subset of \mathbb{R}^{3} with smooth boundary ∂R. Let $\vec{F}: \bar{R} \rightarrow \mathbb{R}^{3}$ denote a C^{1} vector field and $\varphi: \bar{R} \rightarrow \mathbb{R}$ denote a C^{1} function. Then,

$$
\iiint_{R} \vec{F} \cdot \nabla \varphi d V=\iint_{\partial R} \varphi \vec{F} \cdot \vec{n} d A-\iiint_{R} \varphi \nabla \cdot \vec{F} d V .
$$

State the two-dimensional analogue of this result.
4. Use the result of Problem 3 to show that, if R is an open region in \mathbb{R}^{3} with smooth boundary ∂R, and u and v are C^{2} scalar functions defined in \bar{R}, then

$$
\iiint_{R} \nabla u \cdot \nabla v d V=\iint_{\partial R} v \frac{\partial u}{\partial n} d A-\iiint_{R} v \Delta u d V .
$$

State the two-dimensional analogue of this result.
5. In class, and in the notes, we derived the minimal surface PDE

$$
\begin{equation*}
\nabla \cdot\left(\frac{\nabla u}{\sqrt{1+|\nabla u|^{2}}}\right)=0, \quad \text { in } R \tag{1}
\end{equation*}
$$

for a C^{2} function, u, of two variables, $(x, y) \in R$, where R is an open region of the plane.
Show that the PDE in (1) can also be written as

$$
\left(1+u_{y}^{2}\right) u_{x x}-2 u_{x} u_{y} u_{x y}+\left(1+u_{x}^{2}\right) u_{y y}=0, \quad \text { in } R,
$$

where the subscripted symbols read as follows:

$$
\begin{gathered}
u_{x}=\frac{\partial u}{\partial x}, \quad u_{y}=\frac{\partial u}{\partial y} \\
u_{x x}=\frac{\partial^{2} u}{\partial x^{2}}, \quad u_{y y}=\frac{\partial^{2} u}{\partial y^{2}},
\end{gathered}
$$

and

$$
\begin{equation*}
u_{x y}=\frac{\partial^{2} u}{\partial y \partial x}=\frac{\partial^{2} u}{\partial x \partial y}=u_{y x} \tag{2}
\end{equation*}
$$

The fact that the "mixed" second partial derivatives in (2) are equal follows from the assumption that u is a C^{2} function.

