Assignment #6

Due on Friday, February 14, 2014

Read Section 2.3 on *Variational Problems* in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Read on Variational Principles and Euler Equations, pages 117–120 in the text.

Background and Definitions

The Support of a Function. Let R be an open set in \mathbb{R}^n , where n could be 1, 2 or 3. The support of a function $\varphi \colon R \to \mathbb{R}$ is the closure of the set $\{\vec{x} \in R \mid \varphi(\vec{x}) \neq 0\}$. The support of φ is denoted by $\operatorname{supp}(f)$, so that

$$\operatorname{supp}(f) = \overline{\{\vec{x} \in R \mid \varphi(\vec{x}) \neq 0\}}.$$

Do the following problems

1. In assignment #5 you showed how to construct a function $\varphi\colon\mathbb{R}^n\to\mathbb{R}$ such that

$$\operatorname{supp}(\varphi) = \overline{B_1(0)} = \{ \vec{x} \in \mathbb{R}^n \mid |\vec{x}| \leqslant 1 \},\$$

the closed ball of radius 1 around the origin in \mathbb{R}^n . Furthermore, $\varphi > 0$ in $B_1(0)$.

Given an open region, R, in \mathbb{R}^n , and $\vec{x}_o \in R$, show that there exists $\delta > 0$ and a function $\varphi_o \in C_c^{\infty}(R)$ such that

$$\operatorname{supp}(\varphi_o) = \overline{B_{\delta}(\vec{x}_o)} = \{ \vec{x} \in \mathbb{R}^n \mid |\vec{x} - \vec{x}_o| \leq \delta \} \subset R;$$

that is, $\operatorname{supp}(\varphi_o)$ is the closed ball of radius δ around \vec{x}_o , and this is contained in R. Furthermore, $\varphi_o > 0$ in $B_{\delta}(\vec{x}_o)$.

2. Let R denote an open subset of \mathbb{R}^2 and $f: R \to \mathbb{R}$ denote a continuous function. Suppose that

$$\iint_R f(x,y)\varphi(x,y) \, dxdy = 0, \quad \text{ for all } \varphi \in C_c^\infty(R).$$

Show that f(x, y) = 0 for all $(x, y) \in R$.

State analogues of this result for open subsets of \mathbb{R} and \mathbb{R}^3 .

Math 182. Rumbos

3. Use the Divergence Theorem to derive the following "integration by parts" result: Let R denote a bounded subset of \mathbb{R}^3 with smooth boundary ∂R . Let $\overrightarrow{F}: \overline{R} \to \mathbb{R}^3$ denote a C^1 vector field and $\varphi: \overline{R} \to \mathbb{R}$ denote a C^1 function. Then,

$$\iiint_R \overrightarrow{F} \cdot \nabla \varphi \ dV = \iint_{\partial R} \varphi \overrightarrow{F} \cdot \vec{n} \ dA - \iiint_R \varphi \nabla \cdot \overrightarrow{F} \ dV.$$

State the two-dimensional analogue of this result.

4. Use the result of Problem 3 to show that, if R is an open region in \mathbb{R}^3 with smooth boundary ∂R , and u and v are C^2 scalar functions defined in \overline{R} , then

$$\iiint_R \nabla u \cdot \nabla v \ dV = \iint_{\partial R} v \frac{\partial u}{\partial n} \ dA - \iiint_R v \Delta u \ dV.$$

State the two–dimensional analogue of this result.

5. In class, and in the notes, we derived the minimal surface PDE

$$\nabla \cdot \left(\frac{\nabla u}{\sqrt{1+|\nabla u|^2}}\right) = 0, \quad \text{in } R,\tag{1}$$

for a C^2 function, u, of two variables, $(x, y) \in R$, where R is an open region of the plane.

Show that the PDE in (1) can also be written as

$$(1+u_y^2)u_{xx} - 2u_xu_yu_{xy} + (1+u_x^2)u_{yy} = 0, \quad \text{in } R,$$

where the subscripted symbols read as follows:

$$u_x = \frac{\partial u}{\partial x}, \quad u_y = \frac{\partial u}{\partial y},$$
$$u_{xx} = \frac{\partial^2 u}{\partial x^2}, \quad u_{yy} = \frac{\partial^2 u}{\partial y^2},$$

and

$$u_{xy} = \frac{\partial^2 u}{\partial y \partial x} = \frac{\partial^2 u}{\partial x \partial y} = u_{yx}.$$
(2)

The fact that the "mixed" second partial derivatives in (2) are equal follows from the assumption that u is a C^2 function.