Assignment #7

Due on Monday, February 17, 2014

Read Section 2.3 on *Variational Problems* in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Read on Variational Principles and Euler Equations, pages 117–120 in the text.

Background and Definitions

Dirichlet Variational Problem. Let R denote a bounded region in \mathbb{R}^2 with smooth boundary ∂R . Let g denote a real valued function that is continuous in a neighborhood of ∂R . Define $\mathcal{A}_g = \{ u \in C^2(R) \cap C(\overline{R}) \mid u = g \text{ on } \partial R \}$. We define a functional $\mathcal{D}: \mathcal{A}_g \to \mathbb{R}$ by

$$\mathcal{D}(u) = \frac{1}{2} \iint_{R} |\nabla u|^2 \, dx dy, \quad \text{for all } u \in \mathcal{A}_g.$$
(1)

We consider the variational problem:

Find
$$u \in \mathcal{A}_q$$
 such that $\mathcal{D}(u) \leq \mathcal{D}(v)$ for all $v \in \mathcal{A}_q$. (2)

The integral defining \mathcal{D} in (1) is called the **Dirichlet Integral**. We shall refer to this problem as the **Dirichlet Variational Problem**; thus, according to (2), a solution to the Dirichlet Variational Problem minimizes the Dirichlet integral in \mathcal{A}_q .

Do the following problems

1. Show that if $u \in \mathcal{A}_g$ is a solution to the Dirichlet Variational Problem, then u solves the boundary value problem (BVP)

$$\begin{cases} \Delta u = 0 & \text{in } R; \\ u = g & \text{on } \partial R, \end{cases}$$
(3)

where

$$\Delta u = u_{xx} + u_{yy},$$

the two–dimensional Laplacian.

2. Let $w \in C^2(R) \cap C(\overline{R})$ denote a solution of the Dirichlet problem

$$\begin{cases} \Delta w = 0 & \text{in } R; \\ w = 0 & \text{on } \partial R, \end{cases}$$
(4)

where R is a **connected** region in \mathbb{R}^2 . Use the identity

$$\iint_{R} \nabla u \cdot \nabla v \, dx dy = \int_{\partial R} v \frac{\partial u}{\partial n} \, ds - \iint_{R} v \Delta u \, dx dy,$$

for u and v in $C^2(R) \cap C(\overline{R})$ derived in Problem 4 of Assignment #6 to deduce that w must be the zero function; that is, w(x, y) = 0 for all $(x, y) \in R$.

3. Prove that the Dirichlet problem in (3) can have at most one solution.

Suggestion: Assume that the Dirichlet problem in (3) has two solutions, u and v, in $C^2(R) \cap C(\overline{R})$, and put w = u - v. Show that w must solve the Dirichlet problem in (4).

- 4. Suppose that the Dirichlet problem in (3) has a solution $u \in C^2(R) \cap C(\overline{R})$. Show that u is a minimizer of the Dirichlet integral (1) in the class \mathcal{A}_g . Deduce that the Dirichlet Variational Problem in (2) can have at most one solution in \mathcal{A}_g .
- 5. Let $R = \{(x, y) \in \mathbb{R}^2 \mid (x, y) \neq (0, 0)\}$; that is, R is the "punctured plane." Define $u \colon R \to \mathbb{R}$ by

$$u(x,y) = \frac{1}{2}\ln(x^2 + y^2), \quad \text{for } (x,y) \in R.$$

Verify that u solves Laplace's equation,

$$\Delta u = 0,$$

in R.