Assignment \#7

Due on Monday, February 17, 2014
Read Section 2.3 on Variational Problems in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Read on Variational Principles and Euler Equations, pages 117-120 in the text.

Background and Definitions

Dirichlet Variational Problem. Let R denote a bounded region in \mathbb{R}^{2} with smooth boundary ∂R. Let g denote a real valued function that is continuous in a neighborhood of ∂R. Define $\mathcal{A}_{g}=\left\{u \in C^{2}(R) \cap C(\bar{R}) \mid u=g\right.$ on $\left.\partial R\right\}$. We define a functional $\mathcal{D}: \mathcal{A}_{g} \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
\mathcal{D}(u)=\frac{1}{2} \iint_{R}|\nabla u|^{2} d x d y, \quad \text { for all } u \in \mathcal{A}_{g} \tag{1}
\end{equation*}
$$

We consider the variational problem:

$$
\begin{equation*}
\text { Find } u \in \mathcal{A}_{g} \text { such that } \mathcal{D}(u) \leqslant \mathcal{D}(v) \text { for all } v \in \mathcal{A}_{g} \tag{2}
\end{equation*}
$$

The integral defining \mathcal{D} in (1) is called the Dirichlet Integral. We shall refer to this problem as the Dirichlet Variational Problem; thus, according to (2), a solution to the Dirichlet Variational Problem minimizes the Dirichlet integral in \mathcal{A}_{g}.

Do the following problems

1. Show that if $u \in \mathcal{A}_{g}$ is a solution to the Dirichlet Variational Problem, then u solves the boundary value problem (BVP)

$$
\left\{\begin{align*}
\Delta u=0 & \text { in } R \tag{3}\\
u=g & \text { on } \partial R
\end{align*}\right.
$$

where

$$
\Delta u=u_{x x}+u_{y y}
$$

the two-dimensional Laplacian.
2. Let $w \in C^{2}(R) \cap C(\bar{R})$ denote a solution of the Dirichlet problem

$$
\left\{\begin{align*}
\Delta w=0 & \text { in } R \tag{4}\\
w=0 & \text { on } \partial R
\end{align*}\right.
$$

where R is a connected region in \mathbb{R}^{2}. Use the identity

$$
\iint_{R} \nabla u \cdot \nabla v d x d y=\int_{\partial R} v \frac{\partial u}{\partial n} d s-\iint_{R} v \Delta u d x d y
$$

for u and v in $C^{2}(R) \cap C(\bar{R})$ derived in Problem 4 of Assignment \#6 to deduce that w must be the zero function; that is, $w(x, y)=0$ for all $(x, y) \in R$.
3. Prove that the Dirichlet problem in (3) can have at most one solution.

Suggestion: Assume that the Dirichlet problem in (3) has two solutions, u and v, in $C^{2}(R) \cap C(\bar{R})$, and put $w=u-v$. Show that w must solve the Dirichlet problem in (4).
4. Suppose that the Dirichlet problem in (3) has a solution $u \in C^{2}(R) \cap C(\bar{R})$. Show that u is a minimizer of the Dirichlet integral (1) in the class \mathcal{A}_{g}. Deduce that the Dirichlet Variational Problem in (2) can have at most one solution in \mathcal{A}_{g}.
5. Let $R=\left\{(x, y) \in \mathbb{R}^{2} \mid(x, y) \neq(0,0)\right\}$; that is, R is the "punctured plane." Define $u: R \rightarrow \mathbb{R}$ by

$$
u(x, y)=\frac{1}{2} \ln \left(x^{2}+y^{2}\right), \quad \text { for }(x, y) \in R
$$

Verify that u solves Laplace's equation,

$$
\Delta u=0
$$

in R.

