Assignment \#8

Due on Wednesday, February 19, 2014
Read Section 2.3.3 on the Vibrating String in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Read pages 1-13 in the text.
Do the following problems

1. Let R denote an open subset of \mathbb{R}^{3} with smooth boundary, ∂R, and $f: R \rightarrow \mathbb{R}$ and $\varphi: R \rightarrow \mathbb{R}$ denote C^{1} functions. Use the result of Problem 3 in Assignment $\# 1$ to derive the following integration by parts formula:

$$
\begin{equation*}
\iiint_{R} f \frac{\partial \varphi}{\partial x} d V=\iint_{\partial R} f \varphi n_{1} d A-\iiint_{R} \frac{\partial f}{\partial x} \varphi d V \tag{1}
\end{equation*}
$$

where n_{1} is the first component of the outward unit normal, \vec{n}, to the boundary of B.

Write analogous expressions to that in (1) involving partial derivatives with respect to y and with respect to z, respectively.
Obtain analogous result for an open region, R, in \mathbb{R}^{2}.
2. In class, and in the lecture notes, we derived the one dimensional wave equation

$$
\begin{equation*}
\rho \frac{\partial^{2} u}{\partial t^{2}}-\tau \frac{\partial^{2} u}{\partial x^{2}}=0, \quad \text { for } 0<x<L, t>0 \tag{2}
\end{equation*}
$$

that determines small amplitude vibrations of a string of length L, linear density ρ, and constant tension τ, that is fixed at the end-points $x=0$ and $x=L$. The total energy (kinetic plus potential) at time t of the string is given by

$$
E(t)=\frac{1}{2} \int_{0}^{L} \rho u_{t}^{2} d x+\frac{1}{2} \int_{0}^{L} \tau u_{x}^{2} d x
$$

Assume that u is a C^{2} solution of the PDE in (2). Compute the rate of change of total energy, $\frac{d E}{d t}$. What do you conclude about E ?
3. Let w be a C^{2} solution to the initial-boundary value problem

$$
\begin{cases}\rho \frac{\partial^{2} w}{\partial t^{2}}-\tau \frac{\partial^{2} w}{\partial x^{2}}=0, & \text { for } 0<x<L, t>0 \tag{3}\\ w(x, 0)=0, & \text { for all } x \in[0, L] \\ w_{t}(x, 0)=0, & \text { for all } x \in[0, L] \\ w(0, t)=w(L, t)=0, & \text { for all } t\end{cases}
$$

Show that w must be the 0 function.
Suggestion: Define

$$
E(t)=\frac{1}{2} \int_{0}^{L} \rho w_{t}^{2} d x+\frac{1}{2} \int_{0}^{L} \tau w_{x}^{2} d x, \quad \text { for all } t
$$

and use the result of Problem 2.
4. Prove that the initial-boundary value problem

$$
\begin{cases}\rho \frac{\partial^{2} u}{\partial t^{2}}-\tau \frac{\partial^{2} u}{\partial x^{2}}=0, & \text { for } 0<x<L, t>0 \tag{4}\\ u(x, 0)=f(x), & \text { for all } x \in[0, L] \\ u_{t}(x, 0)=g(x), & \text { for all } x \in[0, L] \\ u(0, t)=u(L, t)=0, & \text { for all } t\end{cases}
$$

where f and g are given continuous functions defined in $[0, L]$, can have at most one solution.

Suggestion: Use the result of Problem 3.
5. Let f and g denote twice-differentiable, real valued functions of a single variable and define

$$
u(x, t)=f(x+c t)+g(x-c t), \quad \text { for } x \in \mathbb{R} \text { and } t \in \mathbb{R}
$$

Show that u solves that one-dimensional wave equation

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}
$$

