Assignment #9

Due on Monday, February 24, 2014

Read Chapter 3 on *Classification of PDEs* in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Read pages 1-13 in the text.

Do the following problems

1. Define $N: C^1(\mathbb{R}^2) \to C(\mathbb{R}^2)$ by

$$N(u)(x,t) = \frac{\partial}{\partial t} [u(x,t)] + u(x,t) \frac{\partial}{\partial x} [u(x,t)], \quad \text{ for all } (x,t) \in \mathbb{R}^2,$$

and all $u \in C^1(\mathbb{R}^2)$. Show that N is not a linear operator.

2. Let u and v be two solutions of the linear PDE

$$Lu = f \tag{1}$$

in a linear space of differentiable functions \mathcal{V} . Put w = u - v. Show that w solves the homogeneous PDE

$$Lw = 0. (2)$$

Show that, if w is a solution of the homogeneous PDE in (2) and u is a solution of (1), then u + w solves the PDE in (1).

3. Let R denote an open subset of \mathbb{R}^3 and $g \in C^2(R) \cap C(\overline{R})$. Suppose that $v \in C^2(R) \cap C(\overline{R})$ is a solution to the following Dirichlet problem for Laplace's equation:

$$\begin{cases} -\Delta v = 0, & \text{in } R; \\ v = g, & \text{on } \partial R. \end{cases}$$

Show that the function u = v - g is a solution to the following Dirichlet problem for Poisson's equation:

$$\begin{cases} -\Delta u = f, & \text{in } R; \\ u = 0, & \text{on } \partial R, \end{cases}$$

where $f = \Delta g$.

Math 182. Rumbos

4. In this problem and the next we consider the following Dirichlet problem for Poisson's equation:

$$\begin{cases} -\Delta u = f, & \text{in } R; \\ u = 0, & \text{on } \partial R, \end{cases}$$
(3)

where R is a bounded open subset of \mathbb{R}^3 with smooth boundary, ∂R , and f is a known function that is continuous on \overline{R} , the closure of R.

Denote by $C_o^2(R)$ the space of functions

$$\{u \in C^2(R) \cap C(\overline{R}) \mid u = 0 \text{ on } \partial R\};$$

that is, $C_o^2(R)$ is the space of C^2 functions in R that vanish on the boundary of R.

Define the functional $J\colon C^2_o(R)\to \mathbb{R}$ by

$$J(u) = \frac{1}{2} \iiint_R |\nabla u|^2 \, dV - \iiint_R fu \, dV, \quad \text{for all } u \in C_o^2(R).$$
(4)

For given $u \in C_o^2(R)$ and $\varphi \in C_c^\infty(R)$, define $h \colon \mathbb{R} \to \mathbb{R}$ by

$$h(t) = J(u + t\varphi), \quad \text{for } t \in \mathbb{R}.$$

Compute h'(t) for all t in R and show that

$$h'(0) = \iiint_R \nabla u \cdot \nabla \varphi \ dV - \iiint_R f \varphi \ dV.$$

Show that if u is a minimizer of the functional J defined in (4) in the space $C_o^2(R)$, then

$$\iiint_{R} \nabla u \cdot \nabla \varphi \, dV - \iiint_{R} f \varphi \, dV = 0, \quad \text{for all } \varphi \in C_{c}^{\infty}(R).$$
 (5)

5. Show that, if (5) holds true for $u \in C_o^2(R)$, then u is a solution of the BVP in (3).