Assignment \#9

Due on Monday, February 24, 2014
Read Chapter 3 on Classification of PDEs in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Read pages 1-13 in the text.
Do the following problems

1. Define $N: C^{1}\left(\mathbb{R}^{2}\right) \rightarrow C\left(\mathbb{R}^{2}\right)$ by

$$
N(u)(x, t)=\frac{\partial}{\partial t}[u(x, t)]+u(x, t) \frac{\partial}{\partial x}[u(x, t)], \quad \text { for all }(x, t) \in \mathbb{R}^{2}
$$

and all $u \in C^{1}\left(\mathbb{R}^{2}\right)$. Show that N is not a linear operator.
2. Let u and v be two solutions of the linear PDE

$$
\begin{equation*}
L u=f \tag{1}
\end{equation*}
$$

in a linear space of differentiable functions \mathcal{V}. Put $w=u-v$. Show that w solves the homogeneous PDE

$$
\begin{equation*}
L w=0 . \tag{2}
\end{equation*}
$$

Show that, if w is a solution of the homogeneous PDE in (2) and u is a solution of (1), then $u+w$ solves the PDE in (1).
3. Let R denote an open subset of \mathbb{R}^{3} and $g \in C^{2}(R) \cap C(\bar{R})$.

Suppose that $v \in C^{2}(R) \cap C(\bar{R})$ is a solution to the following Dirichlet problem for Laplace's equation:

$$
\left\{\begin{aligned}
-\Delta v=0, & \text { in } R ; \\
v=g, & \text { on } \partial R .
\end{aligned}\right.
$$

Show that the function $u=v-g$ is a solution to the following Dirichlet problem for Poisson's equation:

$$
\left\{\begin{aligned}
-\Delta u=f, & \text { in } R ; \\
u=0, & \text { on } \partial R,
\end{aligned}\right.
$$

where $f=\Delta g$.
4. In this problem and the next we consider the following Dirichlet problem for Poisson's equation:

$$
\left\{\begin{align*}
-\Delta u=f, & \text { in } R ; \tag{3}\\
u=0, & \text { on } \partial R,
\end{align*}\right.
$$

where R is a bounded open subset of \mathbb{R}^{3} with smooth boundary, ∂R, and f is a known function that is continuous on \bar{R}, the closure of R.
Denote by $C_{o}^{2}(R)$ the space of functions

$$
\left\{u \in C^{2}(R) \cap C(\bar{R}) \mid u=0 \text { on } \partial R\right\}
$$

that is, $C_{o}^{2}(R)$ is the space of C^{2} functions in R that vanish on the boundary of R.
Define the functional $J: C_{o}^{2}(R) \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
J(u)=\frac{1}{2} \iiint_{R}|\nabla u|^{2} d V-\iiint_{R} f u d V, \quad \text { for all } u \in C_{o}^{2}(R) \tag{4}
\end{equation*}
$$

For given $u \in C_{o}^{2}(R)$ and $\varphi \in C_{c}^{\infty}(R)$, define $h: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
h(t)=J(u+t \varphi), \quad \text { for } t \in \mathbb{R}
$$

Compute $h^{\prime}(t)$ for all t in R and show that

$$
h^{\prime}(0)=\iiint_{R} \nabla u \cdot \nabla \varphi d V-\iiint_{R} f \varphi d V .
$$

Show that if u is a minimizer of the functional J defined in (4) in the space $C_{o}^{2}(R)$, then

$$
\begin{equation*}
\iiint_{R} \nabla u \cdot \nabla \varphi d V-\iiint_{R} f \varphi d V=0, \quad \text { for all } \varphi \in C_{c}^{\infty}(R) \tag{5}
\end{equation*}
$$

5. Show that, if (5) holds true for $u \in C_{o}^{2}(R)$, then u is a solution of the BVP in (3).
