Solutions to Exam \#1

1. Consider the system of linear first order PDEs

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial x}-\frac{\partial v}{\partial y}=0 \tag{1}\\
\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}=0
\end{array}\right.
$$

where u and v denote C^{2} functions defined in an open region, R, of \mathbb{R}^{2}. The system of PDEs in (1) is known as the Cauchy-Riemann equations.
(a) Assume that $u, v \in C^{2}(R)$. Verify that u and v both solve Laplace's equation in R.
Solution: Differentiate the first equation in (1) with respect to x and the second one with respect to y to get

$$
\begin{equation*}
u_{x x}=v_{y x} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
u_{y y}=-v_{x y}, \tag{3}
\end{equation*}
$$

respectively. Then, adding the equations in (2) and (3), and using the fact mixed second partial derivatives of C^{2} functions in \mathbb{R}^{2} are equal,

$$
\begin{equation*}
u_{x x}+u_{y y}=0, \tag{4}
\end{equation*}
$$

which shows that u is harmonic in \mathbb{R}^{2}. Similar calculations show that v is also harmonic in \mathbb{R}^{2}.
(b) Assume that $u, v \in C^{2}(R) \cap C(\bar{R})$ and that R is bounded with smooth boundary, ∂R. Show that there can be at most one solution to the system in (1) satisfying the boundary conditions

$$
\left\{\begin{align*}
u(x, y)=f(x, y), & \text { for }(x, y) \in \partial R \tag{5}\\
v(x, y)=g(x, y), & \text { for }(x, y) \in \partial R
\end{align*}\right.
$$

where f and g are given functions that are defined and continuous on a neighborhood of ∂R.

Solution: According to (4), u is a solution of the Dirichlet boundary value problem

$$
\left\{\begin{array}{rll}
u_{x x}+u_{y y} & =0, & \text { in } R \tag{6}\\
u & =f, & \\
\text { on } \partial R .
\end{array}\right.
$$

By the result of Problem 3 in Assignment \#7, the BVP in (6) can have at most one solution. Similarly, the Dirichlet BVP

$$
\left\{\begin{array}{rll}
v_{x x}+v_{y y}=0, & \text { in } R \\
v=g, & & \text { on } \partial R
\end{array}\right.
$$

can have at most one solution. Hence, there can be at most one solution to the system in (1) satisfying the boundary conditions in (5).
2. A subset R of \mathbb{R}^{2} is said to be path-connected if, for any two points, $\left(x_{o}, y_{o}\right)$ and $\left(x_{1}, y_{1}\right)$, in R there exists a C^{1} path $\gamma:[0,1] \rightarrow \mathbb{R}^{2}$ such that

$$
\gamma(0)=\left(x_{o}, y_{o}\right), \gamma(1)=\left(x_{1}, y_{1}\right) \text { and } \gamma(t)=(x(t), y(t)) \in R \text { for all } t \in[0,1]
$$

(a) Assume that R is open and path-connected. Let $u \in C^{1}(R)$ be a solution of the system of first-order PDEs

$$
\begin{cases}\frac{\partial u}{\partial x}=0, & \text { in } R \tag{7}\\ \frac{\partial u}{\partial y}=0, & \text { in } R\end{cases}
$$

Prove that u must be constant in R.
Solution: Assume that R is path connected and that $u \in C^{1}(R)$ solves the system in (7). Let $\left(x_{o}, y_{o}\right)$ be a fixed point in R. Then, since R is path is connected, for any $(x, y) \in R$ there exists a C^{1} path $\gamma:[0,1] \rightarrow \mathbb{R}^{2}$ such that

$$
\begin{equation*}
\gamma(t)=(x(t), y(t)) \in R \text { for all } t \in[0,1] \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\gamma(0)=\left(x_{o}, y_{o}\right) \text { and } \gamma(1)=(x, y) \tag{9}
\end{equation*}
$$

Let $h(t)=u(\gamma(t))=u(x(t), y(t))$ for all $t \in[0,1]$. By the Chain Rule, $h \in C^{1}(0,1)$ and

$$
\begin{equation*}
h^{\prime}(t)=\frac{\partial u}{\partial x} \frac{d x}{d t}+\frac{\partial u}{\partial y} \frac{d y}{d t}, \quad \text { for all } t \in(0,1) \tag{10}
\end{equation*}
$$

It follows from (8), (7) and (10) that $h^{\prime}(t)=0$ for all $t \in(0,1)$. Thus, h is constant on $(0,1)$ and, by continuity of h on $[0,1], h(1)=h(0)$, which implies that

$$
\begin{equation*}
u(\gamma(1))=u(\gamma(0)) . \tag{11}
\end{equation*}
$$

It follows from (11) and (9) that

$$
\begin{equation*}
u(x, y)=u\left(x_{o}, y_{o}\right) \tag{12}
\end{equation*}
$$

Since (x, y) is an arbitrary point in R, it follows from (12) that u is constant in R.
(b) Assume that R is open and path-connected. Let $u \in C^{1}(R)$ satisfy

$$
\begin{equation*}
\iint_{R}|\nabla u|^{2} d x d y=0 \tag{13}
\end{equation*}
$$

Prove that u must be constant in R.
Solution: Assume that R is open and path-connected and $u \in C^{1}(R)$. Then, the integrand in (13) is continuous and nonnegative. It then follows from (13) that

$$
|\nabla u|^{2}=0 \text { in } R,
$$

or

$$
u_{x}^{2}+u_{y}^{2}=0 \text { in } R,
$$

which implies that

$$
u_{x}=u_{y}=0 \text { in } R .
$$

It then follows from the result in part (a) that u is constant in R.
(c) Assume that R is open and path-connected. Suppose that $u \in C_{c}^{\infty}(R)$ satisfies

$$
\begin{equation*}
\iint_{R}|\nabla u|^{2} d x d y=0 \tag{14}
\end{equation*}
$$

What can you conclude about u ?
Solution: Assume that that R is open and path-connected, $u \in C_{c}^{\infty}(R)$ and (14) holds true. It follows from (14) and the result of part (b) that u is constant in R. Now, since u has support in $R, u=0$ on ∂R. Thus, by continuity of $u, u(x, y)=0$ for all $(x, y) \in R$.
3. In this problem we study the following initial value problem for a quasilinear first-order PDE:

$$
\left\{\begin{align*}
u_{t}+u u_{x} & =1, & & \text { for } x \in \mathbb{R}, t>0 ; \tag{15}\\
u(x, 0) & =f(x), & & \text { for } x \in \mathbb{R},
\end{align*}\right.
$$

where f is a given C^{1} function.
(a) Use the method of characteristic curves to find an implicit solution to the initial value problem (15).
Solution: The equation for the characteristic curves of the partial differential equation in (15) is

$$
\begin{equation*}
\frac{d x}{d t}=u \tag{16}
\end{equation*}
$$

Along characteristic curves, u satisfies the ordinary differential equation

$$
\frac{d u}{d t}=1
$$

which can be solved to yield

$$
\begin{equation*}
u(x, t)=t+F(\xi), \tag{17}
\end{equation*}
$$

where $F(\xi)$ depends on the characteristic curve in (16) indexed by ξ. Substituting (17) into (16) yields the ODE

$$
\frac{d x}{d t}=t+F(\xi)
$$

which can be solved to yield

$$
\begin{equation*}
x=\frac{t^{2}}{2}+F(\xi) t+\xi \tag{18}
\end{equation*}
$$

Solving for ξ in (18) and substituting into (17) yields

$$
\left.u(x, t)=t+F\left(x-\frac{t^{2}}{2}-(u(x, t)-t)\right) t\right)
$$

where we have used (17), or

$$
\begin{equation*}
u(x, t)=t+F\left(x+\frac{t^{2}}{2}-t u(x, t)\right) \tag{19}
\end{equation*}
$$

which gives $u(x, t)$ implicitly.
Using the initial condition in (refExam1Prob3Eqn05), we obtain from (19) that

$$
F(x)=f(x), \quad \text { for all } x,
$$

so that

$$
\begin{equation*}
u(x, t)=t+f\left(x+\frac{t^{2}}{2}-t u(x, t)\right), \quad \text { for } x \in \mathbb{R}, t \geqslant 0 \tag{20}
\end{equation*}
$$

(b) Compute a solution to the IVP in (15) for the special case in which $f(x)=$ x for all $x \in \mathbb{R}$; that is, give a formula for computing $u(x, t)$ for $x \in \mathbb{R}$ and $t>0$.
Solution: Using $f(x)=x$ for all x in (20) we obtain

$$
\begin{equation*}
u(x, t)=t+x+\frac{t^{2}}{2}-t u(x, t), \quad \text { for } x \in \mathbb{R}, t \geqslant 0 \tag{21}
\end{equation*}
$$

Solving for $u(x, t)$ in (21) then yields

$$
u(x, t)=\frac{2 x+2 t+t^{2}}{2(1+t)}, \quad \text { for } x \in \mathbb{R} \text { and } t \geqslant 0
$$

4. In Assignment \#4 you derived the one-dimensional heat equation

$$
\begin{equation*}
\frac{\partial u}{\partial t}-k \frac{\partial^{2} u}{\partial x^{2}}=0, \quad \text { for } 0<x<L, t>0 \tag{22}
\end{equation*}
$$

which models the flow of heat in a cylindrical rod of length L, constant-cross sectional area, and thermal diffusivity k. The value $u(x, t)$ gives the temperature in the cross-section of the rod at x and time t.

In this problem we study the initial-boundary-value problem for the PDE in (22):

$$
\begin{cases}\frac{\partial u}{\partial t}-k \frac{\partial^{2} u}{\partial x^{2}}=0, & \text { for } 0<x<L, t>0 \tag{23}\\ u(x, 0)=f(x), & \text { for all } x \in[0, L] \\ u(0, t)=U_{o}(t), & \text { for all } t \\ u(L, t)=U_{L}(t), & \text { for all } t\end{cases}
$$

where f, U_{o} and U_{L} are given continuous functions of a single variable.
(a) For the case in which $U_{o}(t)=U_{L}(t)=0$ for all t in (23), we obtain the initial-boundary-value problem

$$
\begin{cases}\frac{\partial u}{\partial t}-k \frac{\partial^{2} u}{\partial x^{2}}=0, & \text { for } 0<x<L, t>0 \tag{24}\\ u(x, 0)=f(x), & \text { for all } x \in[0, L] \\ u(0, t)=0, & \text { for all } t \\ u(L, t)=0, & \text { for all } t\end{cases}
$$

Define the total energy: $E(t)=\frac{1}{2} \int_{0}^{L} u^{2} d x$, for all t.
Assume that u solves the initial-boundary-value problem in (24). Show that $E(t) \leqslant E(0)$, for all $t \geqslant 0$, so that

$$
\int_{0}^{L}[u(x, t)]^{2} d x \leqslant \int_{0}^{L}|f(x)|^{2} d x, \quad \text { for all } t \geqslant 0
$$

Suggestion: Compute the rate of change of total energy, $E^{\prime}(t)$, for all t.
Solution: Differentiating under the integral sign we obtain

$$
\begin{aligned}
\frac{d E}{d t} & =\frac{1}{2} \int_{0}^{L} \frac{\partial}{\partial t}\left[u^{2}\right] d x \\
& =\frac{1}{2} \int_{0}^{L} 2 u u_{t} d x
\end{aligned}
$$

so that

$$
\frac{d E}{d t}=\int_{0}^{L} u u_{t} d x
$$

Thus, using the assumption that u solves $u_{t}=k u_{x x}$,

$$
\begin{equation*}
\frac{d E}{d t}=k \int_{0}^{L} u u_{x x} d x \tag{25}
\end{equation*}
$$

Next, integrate by parts on the right-hand side of (25) to get

$$
\frac{d E}{d t}=\left.k u u_{x}\right|_{0} ^{L}-k \int_{0}^{L} u_{x} u_{x} d x
$$

or

$$
\begin{equation*}
\frac{d E}{d t}=-k \int_{0}^{L} u_{x}^{2} d x \tag{26}
\end{equation*}
$$

where we have used the boundary conditions in (24).
It follows from (26) and the assumption that $k>0$ that $E^{\prime}(t) \leqslant 0$ for all t; so that $E(t)$ is decreasing as t increases. Consequently,

$$
E(t) \leqslant E(0), \quad \text { for all } t \geqslant 0
$$

Thus, using the definition of $E(t)$,

$$
\frac{1}{2} \int_{0}^{L}[u(x, t)]^{2} d x \leqslant \frac{1}{2} \int_{0}^{L}[u(x, 0)]^{2} d x, \quad \text { for all } t \geqslant 0
$$

or, by virtue of the initial condition in (24)

$$
\begin{equation*}
\int_{0}^{L}[u(x, t)]^{2} d x \leqslant \int_{0}^{L}[f(x)]^{2} d x, \quad \text { for all } t \geqslant 0 \tag{27}
\end{equation*}
$$

which was to be shown.
(b) Show that, if $f(x)=0$ for all $x \in[0, L]$ in (24), then any solution to the initial-boundary-value problem in (24) must be 0 for all x and all t.
Solution: Suppose that the initial condition f in (24) satisfies $f(x)=0$ for all $x \in[0, L]$; it then follows from (27) that, for any solution of the problem (24) with that initial condition,

$$
\int_{0}^{L}[u(x, t)]^{2} d x \leqslant 0, \quad \text { for all } t \geqslant 0
$$

from which we get that

$$
\begin{equation*}
\int_{0}^{L}[u(x, t)]^{2} d x=0, \quad \text { for all } t \geqslant 0 \tag{28}
\end{equation*}
$$

It follows from (28) and the continuity of u that any solution of the initial-boundary-value problem

$$
\begin{cases}\frac{\partial u}{\partial t}-k \frac{\partial^{2} u}{\partial x^{2}}=0, & \text { for } 0<x<L, t>0 \tag{29}\\ u(x, 0)=0, & \text { for all } x \in[0, L] \\ u(0, t)=0, & \text { for all } t \\ u(L, t)=0, & \text { for all } t\end{cases}
$$

must be $u(x, t)=0$ for $0 \leqslant x \leqslant L$ and $t \geqslant 0$.
(c) Prove that the initial-boundary-value problem in (23) can have at most one solution.
Solution: Let u and v denote two C^{2} solutions of the initial-boundaryvalue problem (23), and put $w=u-v$. Then, by the linearity of the PDE and the conditions in (23), w is a solution of the initial-boundary-value problem (29). By the result of part (b), $w(x, t)=0$ for all $x \in[0, L]$ and all $t \geqslant 0$, so that $u=v$. Thus, the initial-boundary-value problem (23) can have at most one solution.
5. In this problem we consider the following nonlinear boundary value problem:

$$
\left\{\begin{align*}
-\Delta u & =g(u), & & \text { in } R \tag{30}\\
u & =0, & & \text { on } \partial R
\end{align*}\right.
$$

where R is a bounded open subset of \mathbb{R}^{3} with smooth boundary, ∂R, and

$$
g: \mathbb{R} \rightarrow \mathbb{R}
$$

is a continuous real valued function of a single real variable. Define $G: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
G(\xi)=\int_{0}^{\xi} g(s) d s, \quad \text { for all } \xi \in \mathbb{R} \tag{31}
\end{equation*}
$$

Denote by $C_{o}^{2}(R)$ the space of functions $\left\{u \in C^{2}(R) \cap C(\bar{R}) \mid u=0\right.$ on $\left.\partial R\right\}$; that is, $C_{o}^{2}(R)$ is the space of C^{2} functions in R that vanish on the boundary of R.

Define the functional $J: C_{o}^{2}(R) \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
J(u)=\frac{1}{2} \iiint_{R}|\nabla u|^{2} d V-\iiint_{R} G(u) d V, \quad \text { for all } u \in C_{o}^{2}(R) \tag{32}
\end{equation*}
$$

(a) For given $u \in C_{o}^{2}(R)$ and $\varphi \in C_{c}^{\infty}(R)$, define $h: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
h(t)=J(u+t \varphi), \quad \text { for } t \in \mathbb{R} \tag{33}
\end{equation*}
$$

Compute $h^{\prime}(t)$ for all t in \mathbb{R} and show that

$$
h^{\prime}(0)=\iiint_{R} \nabla u \cdot \nabla \varphi d V-\iiint_{R} g(u) \varphi d V
$$

Solution: Compute h in (33) using (32) to get

$$
\begin{aligned}
h(t)= & \frac{1}{2} \iiint_{R}|\nabla(u+t \varphi)|^{2} d V-\iiint_{R} G(u+t \varphi) d V \\
= & \frac{1}{2} \iiint_{R}|\nabla u+t \nabla \varphi|^{2} d V-\iiint_{R} G(u+t \varphi) d V \\
= & \frac{1}{2} \iiint_{R}(\nabla u+t \nabla \varphi) \cdot(\nabla u+t \nabla \varphi) d V \\
& \quad-\iiint_{R} G(u+t \varphi) d V \\
= & \frac{1}{2} \iiint_{R}\left[|\nabla u|^{2}+2 t \nabla u \cdot \nabla \varphi+t^{2}|\nabla \varphi|^{2}\right] d V \\
& \quad-\iiint_{R} G(u+t \varphi) d V
\end{aligned}
$$

so that, using (32),

$$
\begin{align*}
h(t)=J(u) & +t \iiint_{R} \nabla u \cdot \nabla \varphi d V+\frac{t^{2}}{2} \iiint_{R}|\nabla \varphi|^{2} d V \tag{34}\\
& -\iiint_{R} G(u+t \varphi) d V+\iiint_{R} G(u) d V
\end{align*}
$$

for all t.
Next, differentiate on both sides of (34) with respect to t to get

$$
\begin{gather*}
h^{\prime}(t)=\iiint_{R} \nabla u \cdot \nabla \varphi d V+t \iiint_{R}|\nabla \varphi|^{2} d V \\
-\frac{d}{d t}\left[\iiint_{R} G(u+t \varphi) d V\right] \tag{35}
\end{gather*}
$$

for all t, where, differentiating under the integral sign and using the Chain Rule,

$$
\begin{aligned}
\frac{d}{d t}\left[\iiint_{R} G(u+t \varphi) d V\right] & =\iiint_{R} \frac{\partial}{\partial t}[G(u+t \varphi)] d V \\
& =\iiint_{R} G^{\prime}(u+t \varphi) \varphi d V
\end{aligned}
$$

so that, by virtue of (31) and the Fundamental Theorem of Calculus,

$$
\begin{equation*}
\frac{d}{d t}\left[\iiint_{R} G(u+t \varphi) d V\right]=\iiint_{R} g(u+t \varphi) \varphi d V, \quad \text { for all } t . \tag{36}
\end{equation*}
$$

Substituting the result of (36) into the right-hand side of (35) then yields

$$
\begin{gather*}
h^{\prime}(t)=\iiint_{R} \nabla u \cdot \nabla \varphi d V+t \iiint_{R}|\nabla \varphi|^{2} d V \\
-\iiint_{R} g(u+t \varphi) \varphi d V \tag{37}
\end{gather*}
$$

for all t. Thus, substituting $t=0$ in (37) then yields

$$
\begin{equation*}
h^{\prime}(0)=\iiint_{R} \nabla u \cdot \nabla \varphi d V-\iiint_{R} g(u) \varphi d V, \tag{38}
\end{equation*}
$$

which was to be shown.
(b) Show that if u is a minimizer of the functional J defined in (32) in the space $C_{o}^{2}(R)$, then

$$
\begin{equation*}
\iiint_{R} \nabla u \cdot \nabla \varphi d V-\iiint_{R} g(u) \varphi d V=0, \quad \text { for all } \varphi \in C_{c}^{\infty}(R) \tag{39}
\end{equation*}
$$

Solution: Suppose that u is a minimizer of J in $C_{o}^{2}(R)$. Thus, for any $\varphi \in C_{c}^{\infty}(R)$,

$$
\begin{equation*}
J(u) \leqslant J(u+t \varphi), \quad \text { for all } t \in \mathbb{R}, \tag{40}
\end{equation*}
$$

since $u+t \varphi \in C_{o}^{2}(R)$ for all $\varphi \in C_{c}^{\infty}(R)$. It then follows from (32), (33) and (40) that

$$
\begin{equation*}
h(0) \leqslant h(t), \quad \text { for all } t \in \mathbb{R} \tag{41}
\end{equation*}
$$

It follows from (41) that h has a minimum at 0 ; thus, since h is differentiable, $h^{\prime}(0)=0$. Hence, in view of (38),

$$
\iiint_{R} \nabla u \cdot \nabla \varphi d V-\iiint_{R} g(u) \varphi d V=0, \quad \text { for all } \varphi \in C_{c}^{\infty}(R)
$$

which is (39).
(c) Show that, if (39) holds true for $u \in C_{o}^{2}(R)$, then u is a solution of the BVP in (30).
Solution: Suppose that (39) holds true for $u \in C_{o}^{2}(R)$. Then, integrating by parts,

$$
-\iiint_{R} \Delta u \varphi d V-\iiint_{R} g(u) \varphi d V=0, \quad \text { for all } \varphi \in C_{c}^{\infty}(R)
$$

where we have used the fact that φ vanishes in a neighborhood of ∂R for all $\varphi \in C_{c}^{\infty}(R)$. We then have that

$$
\begin{equation*}
\iiint_{R}[\Delta u+g(u)] \varphi d V=0, \quad \text { for all } \varphi \in C_{c}^{\infty}(R) \tag{42}
\end{equation*}
$$

It follows from (42) and the result of Problem 2 in Assignment \#6 that

$$
\Delta u+g(u)=0 \quad \text { in } R,
$$

since we are assuming that $u \in C^{2}(R)$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ is continuous. Thus, u solves the PDE in (30). Since we are also assuming that $u \in C_{o}^{2}(R), u$ also satisfies the boundary condition in (30). Hence, u is a solution of the BVP in (30).

