
Math 182. Rumbos Spring 2014 1

Solutions to Exam #1

1. Consider the system of linear first order PDEs
∂u

∂x
− ∂v

∂y
= 0;

∂u

∂y
+
∂v

∂x
= 0,

(1)

where u and v denote C2 functions defined in an open region, R, of R2. The
system of PDEs in (1) is known as the Cauchy–Riemann equations.

(a) Assume that u, v ∈ C2(R). Verify that u and v both solve Laplace’s
equation in R.

Solution: Differentiate the first equation in (1) with respect to x and the
second one with respect to y to get

uxx = vyx (2)

and
uyy = −vxy, (3)

respectively. Then, adding the equations in (2) and (3), and using the fact
mixed second partial derivatives of C2 functions in R2 are equal,

uxx + uyy = 0, (4)

which shows that u is harmonic in R2. Similar calculations show that v is
also harmonic in R2. �

(b) Assume that u, v ∈ C2(R) ∩ C(R) and that R is bounded with smooth
boundary, ∂R. Show that there can be at most one solution to the system
in (1) satisfying the boundary conditions

u(x, y) = f(x, y), for (x, y) ∈ ∂R;

v(x, y) = g(x, y), for (x, y) ∈ ∂R,
(5)

where f and g are given functions that are defined and continuous on a
neighborhood of ∂R.
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Solution: According to (4), u is a solution of the Dirichlet boundary value
problem {

uxx + uyy = 0, in R;
u = f, on ∂R.

(6)

By the result of Problem 3 in Assignment #7, the BVP in (6) can have at
most one solution. Similarly, the Dirichlet BVP{

vxx + vyy = 0, in R;
v = g, on ∂R,

can have at most one solution. Hence, there can be at most one solution
to the system in (1) satisfying the boundary conditions in (5). �

2. A subset R of R2 is said to be path–connected if, for any two points, (xo, yo)
and (x1, y1), in R there exists a C1 path γ : [0, 1]→ R2 such that

γ(0) = (xo, yo), γ(1) = (x1, y1) and γ(t) = (x(t), y(t)) ∈ R for all t ∈ [0, 1].

(a) Assume that R is open and path–connected. Let u ∈ C1(R) be a solution
of the system of first–order PDEs

∂u

∂x
= 0, in R;

∂u

∂y
= 0, in R.

(7)

Prove that u must be constant in R.

Solution: Assume that R is path connected and that u ∈ C1(R) solves
the system in (7). Let (xo, yo) be a fixed point in R. Then, since R is path
is connected, for any (x, y) ∈ R there exists a C1 path γ : [0, 1]→ R2 such
that

γ(t) = (x(t), y(t)) ∈ R for all t ∈ [0, 1]. (8)

and
γ(0) = (xo, yo) and γ(1) = (x, y). (9)

Let h(t) = u(γ(t)) = u(x(t), y(t)) for all t ∈ [0, 1]. By the Chain Rule,
h ∈ C1(0, 1) and

h′(t) =
∂u

∂x

dx

dt
+
∂u

∂y

dy

dt
, for all t ∈ (0, 1). (10)
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It follows from (8), (7) and (10) that h′(t) = 0 for all t ∈ (0, 1). Thus, h
is constant on (0, 1) and, by continuity of h on [0, 1], h(1) = h(0), which
implies that

u(γ(1)) = u(γ(0)). (11)

It follows from (11) and (9) that

u(x, y) = u(xo, yo). (12)

Since (x, y) is an arbitrary point in R, it follows from (12) that u is constant
in R. �

(b) Assume that R is open and path–connected. Let u ∈ C1(R) satisfy∫∫
R

|∇u|2 dxdy = 0. (13)

Prove that u must be constant in R.

Solution: Assume that R is open and path–connected and u ∈ C1(R).
Then, the integrand in (13) is continuous and nonnegative. It then follows
from (13) that

|∇u|2 = 0 in R,

or
u2x + u2y = 0 in R,

which implies that
ux = uy = 0 in R.

It then follows from the result in part (a) that u is constant in R. �

(c) Assume that R is open and path–connected. Suppose that u ∈ C∞
c (R)

satisfies ∫∫
R

|∇u|2 dxdy = 0. (14)

What can you conclude about u?

Solution: Assume that that R is open and path–connected, u ∈ C∞
c (R)

and (14) holds true. It follows from (14) and the result of part (b) that u
is constant in R. Now, since u has support in R, u = 0 on ∂R. Thus, by
continuity of u, u(x, y) = 0 for all (x, y) ∈ R. �

3. In this problem we study the following initial value problem for a quasilinear
first–order PDE: {

ut + uux = 1, for x ∈ R, t > 0;
u(x, 0) = f(x), for x ∈ R, (15)

where f is a given C1 function.
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(a) Use the method of characteristic curves to find an implicit solution to the
initial value problem (15).

Solution: The equation for the characteristic curves of the partial differ-
ential equation in (15) is

dx

dt
= u. (16)

Along characteristic curves, u satisfies the ordinary differential equation

du

dt
= 1,

which can be solved to yield

u(x, t) = t+ F (ξ), (17)

where F (ξ) depends on the characteristic curve in (16) indexed by ξ.

Substituting (17) into (16) yields the ODE

dx

dt
= t+ F (ξ),

which can be solved to yield

x =
t2

2
+ F (ξ)t+ ξ. (18)

Solving for ξ in (18) and substituting into (17) yields

u(x, t) = t+ F

(
x− t2

2
− (u(x, t)− t))t

)
,

where we have used (17), or

u(x, t) = t+ F

(
x+

t2

2
− tu(x, t)

)
, (19)

which gives u(x, t) implicitly.

Using the initial condition in (refExam1Prob3Eqn05), we obtain from (19)
that

F (x) = f(x), for all x,

so that

u(x, t) = t+ f

(
x+

t2

2
− tu(x, t)

)
, for x ∈ R, t > 0. (20)

�
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(b) Compute a solution to the IVP in (15) for the special case in which f(x) =
x for all x ∈ R; that is, give a formula for computing u(x, t) for x ∈ R and
t > 0.

Solution: Using f(x) = x for all x in (20) we obtain

u(x, t) = t+ x+
t2

2
− tu(x, t), for x ∈ R, t > 0. (21)

Solving for u(x, t) in (21) then yields

u(x, t) =
2x+ 2t+ t2

2(1 + t)
, for x ∈ R and t > 0.

�

4. In Assignment #4 you derived the one–dimensional heat equation

∂u

∂t
− k∂

2u

∂x2
= 0, for 0 < x < L, t > 0, (22)

which models the flow of heat in a cylindrical rod of length L, constant–cross
sectional area, and thermal diffusivity k. The value u(x, t) gives the temperature
in the cross–section of the rod at x and time t.

In this problem we study the initial–boundary–value problem for the PDE in
(22): 

∂u

∂t
− k∂

2u

∂x2
= 0, for 0 < x < L, t > 0,

u(x, 0) = f(x), for all x ∈ [0, L];

u(0, t) = Uo(t), for all t;

u(L, t) = U
L
(t), for all t,

(23)

where f , Uo and U
L

are given continuous functions of a single variable.

(a) For the case in which Uo(t) = U
L
(t) = 0 for all t in (23), we obtain the

initial–boundary–value problem

∂u

∂t
− k∂

2u

∂x2
= 0, for 0 < x < L, t > 0,

u(x, 0) = f(x), for all x ∈ [0, L];

u(0, t) = 0, for all t;

u(L, t) = 0, for all t.

(24)
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Define the total energy: E(t) =
1

2

∫ L

0

u2 dx, for all t.

Assume that u solves the initial–boundary–value problem in (24). Show
that E(t) 6 E(0), for all t > 0, so that∫ L

0

[u(x, t)]2 dx 6
∫ L

0

|f(x)|2 dx, for all t > 0.

Suggestion: Compute the rate of change of total energy, E ′(t), for all t.

Solution: Differentiating under the integral sign we obtain

dE

dt
=

1

2

∫ L

0

∂

∂t
[u2] dx

=
1

2

∫ L

0

2uut dx,

so that
dE

dt
=

∫ L

0

uut dx.

Thus, using the assumption that u solves ut = kuxx,

dE

dt
= k

∫ L

0

uuxx dx. (25)

Next, integrate by parts on the right–hand side of (25) to get

dE

dt
= kuux

∣∣∣L
0
− k

∫ L

0

uxux dx

or
dE

dt
= −k

∫ L

0

u2x dx, (26)

where we have used the boundary conditions in (24).

It follows from (26) and the assumption that k > 0 that E ′(t) 6 0 for all
t; so that E(t) is decreasing as t increases. Consequently,

E(t) 6 E(0), for all t > 0.

Thus, using the definition of E(t),

1

2

∫ L

0

[u(x, t)]2 dx 6
1

2

∫ L

0

[u(x, 0)]2 dx, for all t > 0.
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or, by virtue of the initial condition in (24)∫ L

0

[u(x, t)]2 dx 6
∫ L

0

[f(x)]2 dx, for all t > 0, (27)

which was to be shown. �

(b) Show that, if f(x) = 0 for all x ∈ [0, L] in (24), then any solution to the
initial–boundary–value problem in (24) must be 0 for all x and all t.

Solution: Suppose that the initial condition f in (24) satisfies f(x) = 0
for all x ∈ [0, L]; it then follows from (27) that, for any solution of the
problem (24) with that initial condition,∫ L

0

[u(x, t)]2 dx 6 0, for all t > 0,

from which we get that∫ L

0

[u(x, t)]2 dx = 0, for all t > 0, (28)

It follows from (28) and the continuity of u that any solution of the initial–
boundary–value problem

∂u

∂t
− k∂

2u

∂x2
= 0, for 0 < x < L, t > 0,

u(x, 0) = 0, for all x ∈ [0, L];

u(0, t) = 0, for all t;

u(L, t) = 0, for all t.

(29)

must be u(x, t) = 0 for 0 6 x 6 L and t > 0. �

(c) Prove that the initial–boundary–value problem in (23) can have at most
one solution.

Solution: Let u and v denote two C2 solutions of the initial–boundary–
value problem (23), and put w = u− v. Then, by the linearity of the PDE
and the conditions in (23), w is a solution of the initial–boundary–value
problem (29). By the result of part (b), w(x, t) = 0 for all x ∈ [0, L] and
all t > 0, so that u = v. Thus, the initial–boundary–value problem (23)
can have at most one solution. �
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5. In this problem we consider the following nonlinear boundary value problem:{
−∆u = g(u), in R;

u = 0, on ∂R,
(30)

where R is a bounded open subset of R3 with smooth boundary, ∂R, and

g : R→ R

is a continuous real valued function of a single real variable. Define G : R→ R
by

G(ξ) =

∫ ξ

0

g(s) ds, for all ξ ∈ R. (31)

Denote by C2
o (R) the space of functions {u ∈ C2(R) ∩ C(R) | u = 0 on ∂R};

that is, C2
o (R) is the space of C2 functions in R that vanish on the boundary of

R.

Define the functional J : C2
o (R)→ R by

J(u) =
1

2

∫∫∫
R

|∇u|2 dV −
∫∫∫

R

G(u) dV, for all u ∈ C2
o (R). (32)

(a) For given u ∈ C2
o (R) and ϕ ∈ C∞

c (R), define h : R→ R by

h(t) = J(u+ tϕ), for t ∈ R. (33)

Compute h′(t) for all t in R and show that

h′(0) =

∫∫∫
R

∇u · ∇ϕ dV −
∫∫∫

R

g(u)ϕ dV.

Solution: Compute h in (33) using (32) to get

h(t) =
1

2

∫∫∫
R

|∇(u+ tϕ)|2 dV −
∫∫∫

R

G(u+ tϕ) dV

=
1

2

∫∫∫
R

|∇u+ t∇ϕ|2 dV −
∫∫∫

R

G(u+ tϕ) dV

=
1

2

∫∫∫
R

(∇u+ t∇ϕ) · (∇u+ t∇ϕ) dV

−
∫∫∫

R

G(u+ tϕ) dV

=
1

2

∫∫∫
R

[|∇u|2 + 2t∇u · ∇ϕ+ t2|∇ϕ|2] dV

−
∫∫∫

R

G(u+ tϕ) dV,
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so that, using (32),

h(t) = J(u) + t

∫∫∫
R

∇u · ∇ϕ dV +
t2

2

∫∫∫
R

|∇ϕ|2 dV

−
∫∫∫

R

G(u+ tϕ) dV +

∫∫∫
R

G(u) dV,

(34)

for all t.

Next, differentiate on both sides of (34) with respect to t to get

h′(t) =

∫∫∫
R

∇u · ∇ϕ dV + t

∫∫∫
R

|∇ϕ|2 dV

− d

dt

[∫∫∫
R

G(u+ tϕ) dV

]
,

(35)

for all t, where, differentiating under the integral sign and using the Chain
Rule,

d

dt

[∫∫∫
R

G(u+ tϕ)dV

]
=

∫∫∫
R

∂

∂t
[G(u+ tϕ)] dV

=

∫∫∫
R

G′(u+ tϕ)ϕ dV

so that, by virtue of (31) and the Fundamental Theorem of Calculus,

d

dt

[∫∫∫
R

G(u+ tϕ)dV

]
=

∫∫∫
R

g(u+ tϕ)ϕ dV, for all t. (36)

Substituting the result of (36) into the right–hand side of (35) then yields

h′(t) =

∫∫∫
R

∇u · ∇ϕ dV + t

∫∫∫
R

|∇ϕ|2 dV

−
∫∫∫

R

g(u+ tϕ)ϕ dV,

(37)

for all t. Thus, substituting t = 0 in (37) then yields

h′(0) =

∫∫∫
R

∇u · ∇ϕ dV −
∫∫∫

R

g(u)ϕ dV, (38)

which was to be shown. �
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(b) Show that if u is a minimizer of the functional J defined in (32) in the
space C2

o (R), then∫∫∫
R

∇u · ∇ϕ dV −
∫∫∫

R

g(u)ϕ dV = 0, for all ϕ ∈ C∞
c (R). (39)

Solution: Suppose that u is a minimizer of J in C2
o (R). Thus, for any

ϕ ∈ C∞
c (R),

J(u) 6 J(u+ tϕ), for all t ∈ R, (40)

since u + tϕ ∈ C2
o (R) for all ϕ ∈ C∞

c (R). It then follows from (32), (33)
and (40) that

h(0) 6 h(t), for all t ∈ R. (41)

It follows from (41) that h has a minimum at 0; thus, since h is differen-
tiable, h′(0) = 0. Hence, in view of (38),∫∫∫

R

∇u · ∇ϕ dV −
∫∫∫

R

g(u)ϕ dV = 0, for all ϕ ∈ C∞
c (R),

which is (39). �

(c) Show that, if (39) holds true for u ∈ C2
o (R), then u is a solution of the

BVP in (30).

Solution: Suppose that (39) holds true for u ∈ C2
o (R). Then, integrating

by parts,

−
∫∫∫

R

∆uϕ dV −
∫∫∫

R

g(u)ϕ dV = 0, for all ϕ ∈ C∞
c (R),

where we have used the fact that ϕ vanishes in a neighborhood of ∂R for
all ϕ ∈ C∞

c (R). We then have that∫∫∫
R

[∆u+ g(u)]ϕ dV = 0, for all ϕ ∈ C∞
c (R). (42)

It follows from (42) and the result of Problem 2 in Assignment #6 that

∆u+ g(u) = 0 in R,

since we are assuming that u ∈ C2(R) and g : R→ R is continuous. Thus,
u solves the PDE in (30). Since we are also assuming that u ∈ C2

o (R), u
also satisfies the boundary condition in (30). Hence, u is a solution of the
BVP in (30). �


