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Solutions to Exam #1

1. Consider the system of linear first order PDEs

ou Ov

oo oy

(1)
%4_@ = 0
oy oz

where u and v denote C? functions defined in an open region, R, of R?. The
system of PDEs in (1) is known as the Cauchy—Riemann equations.

(a)

Assume that u,v € C?(R). Verify that v and v both solve Laplace’s
equation in R.

Solution: Differentiate the first equation in (1) with respect to x and the
second one with respect to y to get

Uge = Vya (2)

and
Uyy = Uy, (3)

respectively. Then, adding the equations in (2) and (3), and using the fact
mixed second partial derivatives of C? functions in R? are equal,

Ugy + Uyy = 0, (4)

which shows that u is harmonic in R?. Similar calculations show that v is
also harmonic in R2. O

Assume that u,v € C?(R) N C(R) and that R is bounded with smooth
boundary, R. Show that there can be at most one solution to the system
in (1) satisfying the boundary conditions

u(z,y) = f(z,y), for(z,y) € OR;
(5)

v(z,y) = g(z,y), for(z,y) € IR,

where f and ¢ are given functions that are defined and continuous on a

neighborhood of JR.
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Solution: According to (4), u is a solution of the Dirichlet boundary value

problem
Uy + Uy, = 0, in R (6)
u = f, onOdR.

By the result of Problem 3 in Assignment #7, the BVP in (6) can have at
most one solution. Similarly, the Dirichlet BVP

Vpe +Vyy = 0, in R;
v = g, ondR,

can have at most one solution. Hence, there can be at most one solution
to the system in (1) satisfying the boundary conditions in (5). O

2. A subset R of R? is said to be path—connected if, for any two points, (x,,,)
and (z1,y;), in R there exists a C' path ~: [0,1] — R? such that

7(0) = (%0, 90), 7(1) = (z1,31) and 4(t) = (2(t),y(t)) € R for all € [0, 1].

(a) Assume that R is open and path—connected. Let u € C'(R) be a solution
of the system of first—order PDEs

% = 0, in R; -
7
g—Z = 0, inR

Prove that v must be constant in R.
Solution: Assume that R is path connected and that u € C'(R) solves
the system in (7). Let (z,,¥,) be a fixed point in R. Then, since R is path
is connected, for any (z,y) € R there exists a C* path ~: [0, 1] — R? such
that

v(t) = (x(t),y(t)) € R for all t € [0, 1]. (8)
and

7(0) = (20, 45) and (1) = (2,y). (9)

Let h(t) = u(y(t)) = u(z(t),y(t)) for all ¢t € [0,1]. By the Chain Rule,
h € C*(0,1) and

_ Oudx | Oudy

Wit = ——+4 ——2 for all ¢ 1). 1
O =gea tayar ralte O (10)
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It follows from (8), (7) and (10) that A'(f) = 0 for all ¢ € (0,1). Thus, h
is constant on (0,1) and, by continuity of 4 on [0,1], h(1) = h(0), which

implies that
u(v(1)) = u(v(0)). (11)
It follows from (11) and (9) that

u(@,y) = u(to, Yo)- (12)
Since (x,y) is an arbitrary point in R, it follows from (12) that  is constant
in R. U

Assume that R is open and path-connected. Let u € C*(R) satisfy

//R |Vul? dzdy = 0. (13)

Prove that u must be constant in R.
Solution: Assume that R is open and path-connected and v € C*(R).
Then, the integrand in (13) is continuous and nonnegative. It then follows
from (13) that
|Vul* =0 in R,

or

u? + ui =01in R,
which implies that

Uy = Uy = 0 in R.
It then follows from the result in part (a) that u is constant in R. U

Assume that R is open and path—connected. Suppose that u € C®(R)

satisfies
// |Vu|? dedy = 0. (14)
R

What can you conclude about u?

Solution: Assume that that R is open and path—connected, u € C°(R)
and (14) holds true. It follows from (14) and the result of part (b) that u
is constant in R. Now, since u has support in R, v = 0 on JR. Thus, by
continuity of u, u(z,y) = 0 for all (z,y) € R. d

3. In this problem we study the following initial value problem for a quasilinear
first—order PDE:

{ut—i—uu:]c = 1, for x e R, t > 0; (15)

u(z,0) = f(z), forxeR,

where f is a given C! function.
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(a) Use the method of characteristic curves to find an implicit solution to the
initial value problem (15).
Solution: The equation for the characteristic curves of the partial differ-
ential equation in (15) is

dx

i 16
Along characteristic curves, u satisfies the ordinary differential equation

du

1

dt ’
which can be solved to yield

u(z,t) =t + F(§), (17)

where F'(£) depends on the characteristic curve in (16) indexed by &.
Substituting (17) into (16) yields the ODE

dx

which can be solved to yield

2

v = % LR+ (18)

Solving for £ in (18) and substituting into (17) yields

t2
u(z,t) =t+F (Jc —5 = (u(z,t) — t))t) :
where we have used (17), or
t2
u(z,t) =t+ F ($ + 3 tu(x,t)) : (19)
which gives u(zx,t) implicitly.
Using the initial condition in (refExam1Prob3Eqn05), we obtain from (19)

that
F(z) = f(x), for all z,

so that
u(x,t)—t+f<x+§—tu(x,t)>, forx € R, t > 0. (20)

O
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(b) Compute a solution to the IVP in (15) for the special case in which f(x) =
x for all = € R; that is, give a formula for computing u(z,t) for z € R and
t>0.

Solution: Using f(z) = « for all z in (20) we obtain

t2
u(z,t) :t+x+§—tu(m,t), forzeR, t>0. (21)

Solving for u(x,t) in (21) then yields

2x + 2t + 12
u(zx,t) = u, forz € R and t > 0.
2(1+1)
O
4. In Assignment #4 you derived the one-dimensional heat equation
ou  0%u
a—kf@:o, fOI'O<.I'<L,t>O, (22)

which models the flow of heat in a cylindrical rod of length L, constant—cross

sectional area, and thermal diffusivity k. The value u(z, t) gives the temperature

in the cross—section of the rod at x and time ¢.

In this problem we study the initial-boundary—value problem for the PDE in

(22):

( Ou k82u
ot o2
uw(z,0) = f(z), forallzel0,L]; (23)
u(0,t) = Uy(t),  for all ¢

(u(L,t) =U,(t), forallt,

=0, forO<ax<L,t>0,

where f, U, and U, are given continuous functions of a single variable.

(a) For the case in which U,(t) = U, (t) = 0 for all ¢ in (23), we obtain the
initial-boundary—value problem

( 82

%—ka—ag:(), forO<z < L,t>0,

u(x,0) = f(x), for all x € [0, L]; (24)
u(0,t) =0, for all ¢;
\u(L,t) =0, for all ¢.
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1 (L
Define the total energy: E(t) = 5/ u? dz, for all t.
0

Assume that u solves the initial-boundary—value problem in (24). Show
that E(t) < E(0), for all t > 0, so that

L L
/ [u(z,t)]? dr < / |f(z)|* dz, forallt > 0.
0 0

Suggestion: Compute the rate of change of total energy, E'(t), for all t.
Solution: Differentiating under the integral sign we obtain

dE 1 (2o,
L

1
= —/ 2uuy dx,
2 Jo

so that
dE /L
— = uu do.
dt 0
Thus, using the assumption that u solves u; = kg,
dE L
— = k:/ Ul d. (25)
dt 0

Next, integrate by parts on the right—hand side of (25) to get

dE L L
— = kuu,| — k/ Uylly dT
dt 0 0
or ;
dE
— = —k/ u? du, (26)
dt 0

where we have used the boundary conditions in (24).

It follows from (26) and the assumption that k£ > 0 that E’(t) < 0 for all
t; so that E(t) is decreasing as t increases. Consequently,

E(t) < E(0), forallt>0.

Thus, using the definition of E(t),

L
/ [u(x,0)]* dz, for all t > 0.
0

N —

%/0 (e, O] dz <
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or, by virtue of the initial condition in (24)

/0 [u(z, )] do < /0 [f(x)]> dz, forallt >0, (27)

which was to be shown. O

Show that, if f(x) = 0 for all x € [0, L] in (24), then any solution to the
initial-boundary—value problem in (24) must be 0 for all = and all ¢.

Solution: Suppose that the initial condition f in (24) satisfies f(x) =0
for all © € [0, L]; it then follows from (27) that, for any solution of the
problem (24) with that initial condition,

L
/ [u(z,t)]? de <0, forallt >0,
0
from which we get that
L
/ [u(x,t)]? dv =0, forallt>0, (28)
0

It follows from (28) and the continuity of u that any solution of the initial-
boundary—value problem

( Ou 9%u
E—kﬁzo, fOI‘O<.T<L,t>0,
u(z,0) =0, for all z € [0, L]; (29)
u(0,t) =0, for all t;
| u(L,t) =0, for all ¢.
must be u(z,t) =0 for 0 <z < L and t > 0. O

Prove that the initial-boundary—value problem in (23) can have at most
one solution.

Solution: Let u and v denote two C? solutions of the initial-boundary—
value problem (23), and put w = u—v. Then, by the linearity of the PDE
and the conditions in (23), w is a solution of the initial-boundary—value
problem (29). By the result of part (b), w(z,t) = 0 for all € [0, L] and
all t > 0, so that v = v. Thus, the initial-boundary—value problem (23)
can have at most one solution. 0
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5. In this problem we consider the following nonlinear boundary value problem:

(o ok g
where R is a bounded open subset of R? with smooth boundary, OR, and
g:R—R
is a continuous real valued function of a single real variable. Define G: R — R
by
G(¢) = /£ g(s) ds, forall £ € R. (31)
0

Denote by C2(R) the space of functions {u € C?>(R) N C(R) | v = 0 on OR};
that is, C2(R) is the space of C* functions in R that vanish on the boundary of
R.

Define the functional J: C?(R) — R by

:%///R|Vu|2 dV—///RG(u) AV, forallue CX(R).  (32)

(a) For given u € C?(R) and p € C°(R), define h: R — R by
h(t) = J(u+typ), forteR. (33)
Compute A/(t) for all £ in R and show that

:// Vu-chdV—///g(U)SDdV

Solution: Compute h in (33) using (32) to get

h(t) = ///|Vu+w )|? avV — /// (u+tp) d
= %//R|Vu+th0|2 dV—///RG(u+tg0) av

— // (Vu+tVy) - (Vu+tVy) dV
v

1
_ 5// [Vul? + 26Vu - Vo + £2|Vl?] dV

—R// RG(u +tp) dV,
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so that, using (32),

h(t) = J(u)+t//RVu-VgodV+§///R|V<p|2dV

(34)
—///G(u+t<,0)dV+///Gu av,
R R
for all ¢.
Next, differentiate on both sides of (34) with respect to ¢ to get
// Vu -V dV+t/// Vl? dV
R R
(35)

L[ ewo]

for all ¢, where, differentiating under the integral sign and using the Chain

Rule,
£ oo von] - [l
_ ///Raf(uﬂgo)go v

so that, by virtue of (31) and the Fundamental Theorem of Calculus,

% [///R G(u+tg0)dV} = ///Rg(u—l—tga)tp dv,  for all ¢. (36)

Substituting the result of (36) into the right—hand side of (35) then yields

// Vu - wdv+t// Vl? dV
—///Rg(qutsO)sodV,

for all ¢. Thus, substituting ¢ = 0 in (37) then yields

://RVU~V¢ dV—///Rg(u)go av, (38)

which was to be shown. O

(37)
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(b)

Show that if w is a minimizer of the functional J defined in (32) in the
space C2(R), then

//RVu-Vgo dV—///Rg(u)go dV =0, forall p e CF(R). (39)

Solution: Suppose that u is a minimizer of J in C%(R). Thus, for any
p e O (R),
J(u) < J(u+tp), forallteR, (40)

since u + tp € C2(R) for all p € C°(R). It then follows from (32), (33)
and (40) that
h(0) < h(t), forallteR. (41)

It follows from (41) that h has a minimum at 0; thus, since h is differen-
tiable, A/(0) = 0. Hence, in view of (38),

///RVU-WdV—///Rg(u)@dV:o, for all € C°(R),

which is (39). 0
Show that, if (39) holds true for u € C2(R), then u is a solution of the
BVP in (30).

Solution: Suppose that (39) holds true for u € C2(R). Then, integrating
by parts,

_///RAW dV—///Rg(U)so dV =0, forall p € C(R),

where we have used the fact that ¢ vanishes in a neighborhood of OR for
all o € C°(R). We then have that

///R[Au +g(uw)]p dV =0, for all p € CX(R). (42)

It follows from (42) and the result of Problem 2 in Assignment #6 that
Au+g(u) =0 in R,

since we are assuming that u € C?(R) and g: R — R is continuous. Thus,
u solves the PDE in (30). Since we are also assuming that u € C?(R), u
also satisfies the boundary condition in (30). Hence, u is a solution of the
BVP in (30). O



