## Assignment \#11

Due on Monday, March 9, 2015
Read Section 4.2.2 on Existence and Uniqueness in the class lecture notes at http://pages.pomona.edu/~ajr04747/
Read Chapter 3, on Linear Systems, in Blanchard, Devaney and Hall.
Do the following problems

1. Prove that the initial value problem for the second order ODE

$$
\left\{\begin{array}{l}
\frac{d^{2} x}{d t^{2}}+b \frac{d x}{d t}+c x=0 \\
x(0)=x_{o} \\
x^{\prime}(0)=y_{o}
\end{array}\right.
$$

where $b, c, x_{o}$ and $y_{o}$ are given real constants, has unique solution that exists for all $t \in \mathbb{R}$.
2. Let $b$ and $c$ be given real constants. Suppose that $x_{1}: \mathbb{R} \rightarrow \mathbb{R}$ is a solution to the IVP

$$
\left\{\begin{array}{l}
\frac{d^{2} x}{d t^{2}}+b \frac{d x}{d t}+c x=0 \\
x(0)=1 \\
x^{\prime}(0)=0
\end{array}\right.
$$

and $x_{2}: \mathbb{R} \rightarrow \mathbb{R}$ be a solution to the IVP

$$
\left\{\begin{array}{l}
\frac{d^{2} x}{d t^{2}}+b \frac{d x}{d t}+c x=0 \\
x(0)=0 \\
x^{\prime}(0)=1
\end{array}\right.
$$

Prove that $x_{1}$ and $x_{2}$ are linearly independent.
Suggestion: Begin with the equation

$$
c_{1} x_{1}(t)+c_{2} x_{2}(t)=0, \quad \text { for all } t \in \mathbb{R}
$$

3. Let $b$ and $c$ be given real constants. Let $x_{1}: \mathbb{R} \rightarrow \mathbb{R}$ and $x_{2}: \mathbb{R} \rightarrow \mathbb{R}$ be linearly independent solutions of the second order differential equation

$$
\begin{equation*}
\frac{d^{2} x}{d t^{2}}+b \frac{d x}{d t}+c x=0 \tag{1}
\end{equation*}
$$

Prove that any solution of (1) must be of the form

$$
x(t)=c_{1} x_{1}(t)+c_{2} x_{2}(t), \quad \text { for all } t \in \mathbb{R}
$$

4. Let $b$ and $c$ be given real constants. Suppose that $\lambda_{1}$ and $\lambda_{2}$ be distinct real solutions to the equation

$$
\lambda^{2}+b \lambda+c=0
$$

Prove that the general solution of the equation

$$
\frac{d^{2} x}{d t^{2}}+b \frac{d x}{d t}+c x=0
$$

is given by

$$
x(t)=c_{1} e^{\lambda_{1} t}+c_{2} e^{\lambda_{2} t}, \quad \text { for all } t \in \mathbb{R},
$$

and arbitrary constants $c_{1}$ and $c_{2}$.
5. Find the solution to the initial value problem for the following second order differential equation:

$$
\left\{\begin{array}{l}
x^{\prime \prime}-x=e^{t} \\
x(0)=1 ; \\
x^{\prime}(0)=0
\end{array}\right.
$$

