Assignment \#2

Due on Friday, January 30, 2015
Read Section 3.1 on Types of Differential Equations in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Read Section 2.1, on Modeling via Systems, in Blanchard, Devaney and Hall.
Do the following problems

1. The second order differential equation

$$
\begin{equation*}
m \frac{d^{2} s}{d t^{2}}=-k s-b v+f(t) \tag{1}
\end{equation*}
$$

models a spring-mass system consisting of an object of mass m, attached to a spring with stiffness constat k, subject to a frictional force proportional to the velocity $v(t)=s^{\prime}(t)$, for all t, that is also driven by a time-dependent force $f(t)$. Express the system in (1) as a two dimensional system of first order differential equations.
2. Let $g: \mathbb{R} \rightarrow \mathbb{R}$ denote a continuous functions. Express the second order equation

$$
x^{\prime \prime}+g(x)=0
$$

as a system of first-order equations.
3. Given real numbers λ_{1} and λ_{2}, let

$$
\begin{equation*}
\binom{x(t)}{y(t)}=\binom{c_{1} e^{\lambda_{1} t}}{c_{2} e^{\lambda_{2} t}}, \quad \text { for } t \in \mathbb{R} \tag{2}
\end{equation*}
$$

for constants c_{1} and c_{2}.
Verify that the vector-valued function defined in (2) solves the two-dimensional system

$$
\left\{\begin{aligned}
\frac{d x}{d t} & =\lambda_{1} x \\
\frac{d y}{d t} & =\lambda_{2} y
\end{aligned}\right.
$$

4. Let

$$
\begin{equation*}
\binom{x(t)}{y(t)}=\binom{\cos t}{\sin t}, \quad \text { for } t \in \mathbb{R} \tag{3}
\end{equation*}
$$

Verify that the vector-valued function defined in (3) solves the two-dimensional system

$$
\left\{\begin{aligned}
\frac{d x}{d t} & =-y \\
\frac{d y}{d t} & =x
\end{aligned}\right.
$$

5. Let

$$
\binom{x(t)}{y(t)}
$$

be a solution to the linear system

$$
\left\{\begin{aligned}
\frac{d x}{d t} & =y \\
\frac{d y}{d t} & =-\omega^{2} x
\end{aligned}\right.
$$

where ω is a positive real number.
Verify that x solves the second order differential equations

$$
\frac{d^{2} x}{d t^{2}}=-\omega^{2} x
$$

Show that y solves the same second order equation.

