Assignment \#4

Due on Friday, February 6, 2015
Read Chapter 3 on Solving Linear Systems in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Read Section 2.2, on The Geometry of Systems, in Blanchard, Devaney and Hall.
Do the following problems

1. Explain why the following linear system of differential equations cannot be put in diagonal form.

$$
\left\{\begin{aligned}
\frac{d x}{d t} & =2 x+y \\
\frac{d y}{d t} & =-x+4 y
\end{aligned}\right.
$$

2. Explain why the following linear system of differential equations cannot be put in diagonal form.

$$
\left\{\begin{aligned}
\frac{d x}{d t} & =a y \\
\frac{d y}{d t} & =-b x
\end{aligned}\right.
$$

where a and b are positive constants
3. Explain why the following linear system of differential equations cannot be put in diagonal form.

$$
\left\{\begin{aligned}
\frac{d x}{d t} & =-2 x-3 y \\
\frac{d y}{d t} & =3 x-2 y
\end{aligned}\right.
$$

4. Determine whether or not the linear system

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=y \\
\frac{d y}{d t}=8 x-2 y
\end{array}\right.
$$

can be put in diagonal form. If so, give the general solution to the system and sketch the phase portrait.
5. Determine whether or not the linear system

$$
\left\{\begin{aligned}
\frac{d x}{d t} & =-3 x+2 y \\
\frac{d y}{d t} & =4 x-5 y
\end{aligned}\right.
$$

can be put in diagonal form. If so, give the general solution to the system and sketch the phase portrait.

