Assignment \#6

Due on Monday, February 16, 2015
Read Chapter 3 on Solving Linear Systems in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Read Section 2.2, on The Geometry of Systems, in Blanchard, Devaney and Hall.
Do the following problems

1. For the following linear system, give the equations for the solution curves and sketch the phase portrait.

$$
\left\{\begin{aligned}
\dot{x} & =-x+y ; \\
\dot{y} & =-x-y .
\end{aligned}\right.
$$

2. Consider the system

$$
\left\{\begin{align*}
\frac{d x}{d t} & =y \tag{1}\\
\frac{d y}{d t} & =-\omega^{2} x
\end{align*}\right.
$$

where ω is a positive constant.
(a) Use the change of variables

$$
\begin{aligned}
u & =\frac{1}{\omega} y \\
v & =x
\end{aligned}
$$

to turn system (1) into a system in the u and v variables.
(b) Solve the system in part (b) and use it to construct solutions to the system in (1).
(c) Sketch the phase-portrait of the system in (1).
3. Sketch the phase portrait of the system

$$
\left\{\begin{aligned}
\frac{d x}{d t} & =-x+4 y \\
\frac{d y}{d t} & =-2 x+3 y
\end{aligned}\right.
$$

4. Turn the second order equation

$$
\begin{equation*}
x^{\prime \prime}+x=0 \tag{2}
\end{equation*}
$$

into a two-dimensional linear system; construct a solution to the system; and use the solution of the system to construct solutions to (3).
Give a solution to (3) subject to the initial conditions $x(0)=0, x^{\prime}(0)=1$.
5. Turn the second order equation

$$
\begin{equation*}
x^{\prime \prime}-x^{\prime}-2 x=0 \tag{3}
\end{equation*}
$$

into a two-dimensional linear system; construct a solution to the system; and use the solution of the system to construct solutions to (3).
Give a solution to (3) subject to the initial conditions $x(0)=1, x^{\prime}(0)=0$.

