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Review Problems for Final Exam

1. Consider a chemical reaction
A+B → C

in which two substances, A and B, react to produce a single substance, C. As-
sume that the reverse reaction does not have a considerable effect and therefore
can be neglected. Let y = y(t) denote the number of kilograms of the reaction
product, C, after t minutes. Suppose that the original amount of the reacting
substances are 80 kilograms and 60 kilograms. As a consequence of the law of
mass action, we obtain that

dy

dt
= k(80− y)(60− y) for some constant k > 0.

That is, the rate of production of C is proportional to the product of the
remaining amounts of the reactants A and B.

(a) Sketch some possible solutions to the equation.

(b) Use separation of variables to solve the above differential equation assum-
ing that y = 0 when t = 0.

(c) In part (b), assume also that there are 20 kilograms of the reaction product
10 minutes after the onset of the reaction. How much reaction product is
present 5 minutes later?

2. The differential equation

dN

dt
= rN

(
1− N

K

)
− p(N,Λ), (1)

models a population that is subject to predation reflected in the term p(N,Λ),
which depends on the population size, N , and a set of parameters, Λ. In the
absence of predation the population undergoes logistic growth with intrinsic
growth rate, r, and carrying capacity, K.

In 1978, Ludwig, Jones and Holling published an article in the Journal of Animal
Ecology (Qualitative analysis of insect outbreak systems: the spruce budworm
and forest, Volume 47, pp. 315–332) in which they proposed the following
constitutive equation for the predation term,

p(N, a, b) =
bN2

a2 +N2
. (2)
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(a) Give interpretations for the parameters a and b in (2).

(b) Nondimensionalize the differential equation in (1) by introducing dimen-
sionless variables

u =
N

µ
and τ =

t

λ
,

to obtain the dimensionless equation

du

dτ
= αu

(
1− u

β

)
− u2

1 + u2
, (3)

where α and β are dimensionless parameters.

Express α and β in terms of the parameters r, K, a and b.

(c) Observe that u = 0 is an equilibrium point of the equation in (3). Deter-
mine the nature of the stability of this equilibrium point.

3. In this problem we show how small changes in the coefficients of system of linear
equations can affect stability of an equilibrium point that is a center.

(a) Consider the system

(
ẋ
ẏ

)
=

(
0 1
−1 0

)(
x
y

)
. Show that (0, 0) a center.

(b) Next, consider

(
ẋ
ẏ

)
=

(
ε 1
−1 ε

)(
x
y

)
, where |ε| 6= 0 is arbitrarily small.

Show that no matter how small |ε| 6= 0 is, the center in part (a) becomes
a spiral point. Discuss the stability–type for ε > 0 and for ε < 0.

4. Consider the second order, linear, homogeneous differential equation

d2x

dt2
+ µx = 0, (4)

where µ is a real parameter.

(a) Give the general solution for each of the cases (i) µ < 0, (ii) µ = 0 and
(iii) µ > 0.

(b) For each of the cases (i), (ii) and (iii) in part (a), determine conditions
on µ (in any) that will guarantee that the equation in (4) has a nontrivial
solution x : R→ R satisfying x(0) = 0 and x(π) = 0.

5. Give the general solution of the system

(
ẋ
ẏ

)
=

(
1 −4
4 −7

)(
x
y

)
.



Math 102. Rumbos Spring 2015 3

6. Consider the the nonlinear differential equation

du

dt
= eu − 1.

Find the equilibrium points of the equations and study their stability.

7. Consider the two–dimensional, autonomous system
dx

dt
= (x− y)(1− x2 − y2);

dy

dt
= (x+ y)(1− x2 − y2).

(a) Verify that every point in the unit circle, C = {(x, y) ∈ R2 | x2 + y2 = 1},
is an equilibrium point.

(b) Show that (0, 0) is an isolated equilibrium point of the system.

(c) Determine the nature of the stability of (0, 0).

(d) Let D denote the open unit disc in R2,

D = {(x, y) ∈ R2 | x2 + y2 < 1}.

Show that every trajectory that starts at a point (xo, yo) ∈ D, such that
(xo, yo) 6= (0, 0), will tend towards C as t→∞.

(e) Show that every trajectory that starts at a point (xo, yo) ∈ R2, such that
x2o + y2o > 1, will tend towards C as t→∞.

8. Consider the two–dimensional, autonomous system
dx

dt
= x− y − x(x2 + y2);

dy

dt
= x+ y − y(x2 + y2).

(a) Show that (0, 0) is an isolated equilibrium point of the system.

(b) Determine the nature of the stability of (0, 0).

9. Consider the two–dimensional, autonomous system
dx

dt
= y;

dy

dt
= 4x− x3.
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(a) Sketch nullclines, compute equilibrium points, and use the Principle of Lin-
earized Stability (when applicable) to determine the nature of the stability
of the equilibrium points.

(b) Find a conserved quantity for the system.

(c) Discuss the phase–portrait of the system.

10. The system of differential equations
dx

dt
= x(2− x− y);

dy

dt
= y(3− 2x− y)

describes competing species of densities x > 0 and y > 0. Explain why these
equations make it mathematically possible, but extremely unlikely, for both
species to survive.

11. The system of differential equations
dx

dt
=

c

a+ ky
− b;

dy

dt
= γx− β,

models the time evolution of the interaction of an enzyme of concentration, y,
and m–RNA, of concentration x, in a process of protein synthesis. The parame-
ters a, b, c, k, α and β are assumed to be positive. This model was proposed by
Brian C. Goodwin in 1965 (Oscillatory in Enzymatic Control Processes, in Ad-
vances in Enzyme Regulation,Volume 3, 1965, Pages 425–428, IN1–IN2, 429430,
IN3–IN6, 431–437).

(a) Sketch the nullclines, find all equilibrium points, and apply the Principle
of Linearized Stability (when applicable) to determine the nature of the
stability of the equilibrium points.

(b) Find a conserved quantity for the the system.

(c) Discuss the phase–portrait of the system.


