Assignment \#10

Due on Wednesday, March 4, 2015
Read Section 14.1, on The Partial Derivative, in Calculus: Multivariable, by McCallum, Hughes-Hallett, Gleason, et al.
Read Section 14.2, on Computing Partial Derivatives Algebraically, in Calculus: Multivariable, by McCallum, Hughes-Hallett, Gleason, et al.

Do the following problems

1. Compute the first partial derivatives of the function f given by

$$
f(x, y)=\frac{x}{x^{2}+y^{2}}, \quad \text { for }(x, y) \neq(0,0) .
$$

2. Compute the first partial derivatives of the function f given by

$$
f(x, y)=e^{-x} \sin y, \quad \text { for all }(x, y) \in \mathbb{R}^{2} .
$$

3. Find a function f of the variables x and y satisfying

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=y+2 x \\
& \frac{\partial f}{\partial y}=x
\end{aligned}
$$

4. Let f be as in Problem 2.

Compute the second partial derivatives of f :

$$
\frac{\partial^{2} f}{\partial x^{2}}, \quad \frac{\partial^{2} f}{\partial x \partial y}, \quad \frac{\partial^{2} f}{\partial y \partial x} \quad \text { and } \quad \frac{\partial^{2} f}{\partial y^{2}}
$$

5. Let $f(x, y)=e^{-x} \cos y$ for all $(x, y) \in \mathbb{R}^{2}$.

Verify that

$$
\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}=0
$$

