Assignment \#11

Due on Friday, March 6, 2015
Read Section 14.3, on Local Linearity and the Differential, in Calculus: Multivariable, by McCallum, Hughes-Hallett, Gleason, et al.
Read Section 14.4, on Gradients and Directional Derivatives in the Plane, in Calculus: Multivariable, by McCallum, Hughes-Hallett, Gleason, et al.

Background and Definitions.

Directional Derivative. Let $f: D \rightarrow \mathbb{R}$ be a real-valued function defined on some domain, D, in the plane containing a point $\left(x_{o}, y_{o}\right)$. Suppose that the first order partial derivatives of f at $\left(x_{o}, y_{o}\right)$ exist. Let $\theta \in[0,2 \pi)$. The directional derivative of f at $\left(x_{o}, y_{o}\right)$ in the direction of the angle θ, denoted by $D_{\theta} f\left(x_{o}, y_{o}\right)$, is defined by

$$
D_{\theta} f\left(x_{o}, y_{o}\right)=\frac{\partial f}{\partial x}\left(x_{o}, y_{o}\right) \cdot \cos \theta+\frac{\partial f}{\partial y}\left(x_{o}, y_{o}\right) \cdot \sin \theta
$$

Do the following problems

1. Let $f: D \rightarrow \mathbb{R}$ have partial derivatives at $\left(x_{o}, y_{o}\right)$, for $\left(x_{o}, y_{o}\right) \in D$. Compute the directional derivatives: (a) $D_{0} f\left(x_{o}, y_{o}\right)$, and (b) $D_{\pi / 2} f\left(x_{o}, y_{o}\right)$.
2. Let $f(x, y)=x^{2}+y^{2}$ for all $(x, y) \in \mathbb{R}^{2}$. Compute the directional derivative $D_{\theta} f(2,1)$ when (a) $\theta=\pi / 4$, and (b) $\theta=-\pi / 4$.
3. Let $f(x, y)=3 x y+y^{2}$ for all $(x, y) \in \mathbb{R}^{2}$. Compute the rate of change of f at $(2,3)$ in the direction of the vector $\vec{v}=3 \widehat{i}-\widehat{j}$.
4. Let $f(x, y)=\frac{x+y}{1+x^{2}}$ for all $(x, y) \in \mathbb{R}^{2}$. Compute the rate of change of f at $(1,-2)$ in the direction of the vector $\vec{v}=3 \widehat{i}-2 \widehat{j}$.
5. The directional derivative of a function, f, of two variables, x and y, at $(2,1)$ in the direction towards the point $(1,3)$ is $-2 / \sqrt{5}$, and the directional derivative at $(2,1)$ in the direction of towards the point $(5,5)$ is 1 . Compute the first-order partial derivatives of f at $(2,1)$.
