Assignment #12

Due on Monday, March 9, 2015

Read Section 14.3, on *Local Linearity and the Differential*, in Calculus: Multivariable, by McCallum, Hughes–Hallett, Gleason, et al.

Read Section 14.4, on *Gradients and Directional Derivatives in the Plane*, in Calculus: Multivariable, by McCallum, Hughes–Hallett, Gleason, et al.

Read Section 14.6, on *The Chain Rule*, in Calculus: Multivariable, by McCallum, Hughes–Hallett, Gleason, et al.

Background and Definitions.

The Chain Rule (Version I). Let $f: D \to \mathbb{R}$ be a real-valued function defined on some domain, D, in the xy-plane, and let $\overrightarrow{r}: I \to \mathbb{R}^2$, for some open interval I, denote a differentiable path with $\overrightarrow{r}(t) \in D$ for all $t \in I$. Suppose that the partial derivatives of f exist and are continuous in D. Then, for any $t \in I$,

$$\frac{d}{dt}[f(\overrightarrow{r}(t))] = \frac{\partial f}{\partial x}(\overrightarrow{r}(t))\frac{dx}{dt} + \frac{\partial f}{\partial y}(\overrightarrow{r}(t))\frac{dy}{dt}$$

where $\overrightarrow{r}(t) = (x(t), y(t) \text{ for all } t \in I.$

Do the following problems

1. Let $f: \mathbb{R}^2 \to \mathbb{R}$ have continuous partial derivatives for all $(x, y) \in \mathbb{R}^2$, and $\overrightarrow{r}(t) = at\widehat{i} + bt\widehat{j}$, for all $t \in \mathbb{R}$, where a and b are given real numbers.

Apply the Chain Rule to compute $\frac{d}{dt}[f(\overrightarrow{r}(t))]$.

2. A bug is moving on a two-dimensional plate, D, with temperature u(x, y) for all $(x, y) \in D$. Assume that at $(x_o, y_o) \in D$,

$$\frac{\partial u}{\partial x}(x_o, y_o) = -2$$
 and $\frac{\partial u}{\partial y}(x_o, y_o) = 1.$

Suppose the velocity of the bug at when it is at (x_o, y_o) is given by the vector $v = 4\hat{i} + 7\hat{j}$. Compute the rate of change of temperature along the path of the but at the point (x_o, y_o) .

Math 32S. Rumbos

- 3. Apply the Chain Rule to obtain $\frac{dz}{dt}$, where $z = xy^2$ and $(x(t), y(t)) = (e^{-t}, \sin t)$ for all $t \in \mathbb{R}$.
- 4. Let $f: \mathbb{R}^2 \to \mathbb{R}$ have continuous partial derivatives for all $(x, y) \in \mathbb{R}$. Let C denote the level curve f(x, y) = c, for some constant c. Let (a, b) be a point on the curve C; so that f(a, b) = c. Assume that

$$\frac{\partial f}{\partial y}(a,b) \neq 0.$$

Use the Chain Rule to compute the slope of the line tangent to C at the point (a, b).

5. Let $f: \mathbb{R}^2 \to \mathbb{R}$ have continuous partial derivatives for all $(x, y) \in \mathbb{R}$. Suppose also that

$$f(tx, ty) = t^2 f(x, y), \quad \text{for all } (x, y) \in \mathbb{R}^2 \text{ and all } t \in \mathbb{R}.$$
 (1)

Verify that f satisfies the equation

$$x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y} = 2f.$$

Suggestion: Differentiate with respect to t on both sides of (1); apply the Chain Rule on the left-hand side; and then make the substitution t = 1.