Assignment \#13

Due on Wednesday, March 11, 2015

Read Section 14.4, on Gradients and Directional Derivatives in the Plane, in Calculus: Multivariable, by McCallum, Hughes-Hallett, Gleason, et al.

Read Section 14.6, on The Chain Rule, in Calculus: Multivariable, by McCallum, Hughes-Hallett, Gleason, et al.
Read Section 13.3, on The Dot Product, in Calculus: Multivariable, by McCallum, Hughes-Hallett, Gleason, et al.

Background and Definitions.

The Chain Rule (Version II). Let $f: D \rightarrow \mathbb{R}$ be a real-valued function defined on some domain, D, in the $x y$-plane, and let $\vec{r}: I \rightarrow \mathbb{R}^{2}$, for some open interval I, denote a differentiable path with $\vec{r}(t) \in D$ for all $t \in I$. Suppose that the partial derivatives of f exist and are continuous in D. Then, for any $t \in I$,

$$
\frac{d}{d t}[f(\vec{r}(t))]=\nabla f(\vec{r}(t)) \cdot \vec{r}^{\prime}(t)
$$

where ∇f denotes the gradient of f; that is,

$$
\nabla f(x, y)=\frac{\partial f}{\partial x}(x, y) \widehat{i}+\frac{\partial f}{\partial y}(x, y) \widehat{j}, \quad \text { for all }(x, y) \in \mathbb{R}^{2}
$$

$\vec{r}^{\prime}(t)$ is the derivative of the path \vec{r}, and the dot between ∇f and \vec{r} indicates the dot product of the two vectors.

Do the following problems

1. Let $f: D \rightarrow \mathbb{R}$ be a real-valued function defined on some domain, D, in the $x y$ plane, and let $\vec{r}: I \rightarrow \mathbb{R}^{2}$, for some open interval I, denote a parametrization of a contour curve for the function f; that is,

$$
f(\vec{r}(t))=c, \quad \text { for all } t \in I
$$

Apply the Chain Rule to obtain

$$
\nabla f(\vec{r}(t)) \cdot \vec{r}^{\prime}(t)=0, \quad \text { for all } t \in I
$$

deduce therefore that the gradient of f is perpendicular to the level curves of f.
2. Let \widehat{u} denote a unit vector and put $\vec{r}(t)=\left(x_{o}, y_{o}\right)+t \widehat{u}$ for all $t \in \mathbb{R}$. Let $f: D \rightarrow \mathbb{R}$ be a real-valued function defined on some domain, D, in the $x y-$ plane that contains the point $\left(x_{o}, y_{o}\right)$.
Apply the Chain Rule to compute $\frac{d}{d t}[f(\vec{r}(t))]$ at $t=0$. Explain why this yields the directional derivative of f at $\left(x_{o}, y_{o}\right)$ in the direction of \widehat{u}. We denote this number by $D_{\widehat{u}} f\left(x_{o}, y_{o}\right)$.
3. Let \widehat{u} denote a unit vector and let $f: D \rightarrow \mathbb{R}$ be a real-valued function defined on some domain, D, in the $x y$-plane. Define $D_{\widehat{u}} f$ as in Problem 2; so that

$$
D_{\widehat{u}} f(x, y)=\nabla f(x, y) \cdot \widehat{u}, \quad \text { for all }(x, y) \in D
$$

Deduce that

$$
\begin{equation*}
D_{\widehat{u}} f(x, y)=\|\nabla f(x, y)\| \cos \theta, \quad \text { for all }(x, y) \in D \tag{1}
\end{equation*}
$$

where θ is the angle that $\nabla f(x, y)$ makes with the unit vector \widehat{u}.
Conclude from (1) that the rate of change of f at (x, y) is the largest in the direction of the gradient of f at (x, y).
4. Let $f(x, y)=3 x y+y^{2}$ for all $(x, y) \in \mathbb{R}^{2}$. Give The direction of maximum rate of change of f at $(2,3)$.
5. Let $f(x, y)=3 x y+y^{2}$ for all $(x, y) \in \mathbb{R}^{2}$. Give The direction in which f is decreasing the fastest at $(2,3)$.

