Assignment #14

Due on Wednesday, March 25, 2015

Read Section 14.3, on *Local Linearity and the Differential*, in Calculus: Multivariable, by McCallum, Hughes–Hallett, Gleason, et al.

Background and Definitions.

• Linear approximation of a real valued function of two variables. Let $f: D \to \mathbb{R}$ be a real-valued function defined on some domain, D, in the xy-plane, and let (x_o, y_o) denote a point in D. Suppose that the partial derivatives of f exist and are continuous in D. Then, the linear approximation for f at (x_o, y_o) is the linear function $L: \mathbb{R}^2 \to \mathbb{R}$ given by

$$L(x,y) = f(x_o, y_o) + \frac{\partial f}{\partial x}(x_o, y_o) \cdot (x - x_o) + \frac{\partial f}{\partial y}(x_o, y_o) \cdot (y - y_o), \quad \text{for } (x,y) \in \mathbb{R}^2.$$

L(x, y) approximates f(x, y) when (x, y) is very close to (x_o, y_o) . We write

$$f(x,y) \approx f(x_o, y_o) + \frac{\partial f}{\partial x}(x_o, y_o) \cdot (x - x_o) + \frac{\partial f}{\partial y}(x_o, y_o) \cdot (y - y_o), \qquad (1)$$

for (x, y) in D sufficiently close to (x_o, y_o) .

• Tangent plane to the graph of a function of two variables. The graph of the equation

$$z = L(x, y)$$

is a plane through (x_o, y_o) called the tangent plane to the graph of z = f(x, y) at the point (x_o, y_o) .

• The differential of a function of two variables. Writing z = f(x, y) and $z_o = f(x_o, y_o)$, we can rewrite (1) as

$$z \approx z_o \frac{\partial f}{\partial x}(x_o, y_o) \cdot (x - x_o) + \frac{\partial f}{\partial y}(x_o, y_o) \cdot (y - y_o)$$

when (x, y) is sufficiently close to (x_o, y_o) , or

$$\Delta z \approx \frac{\partial f}{\partial x}(x_o, y_o)\Delta x + \frac{\partial f}{\partial y}(x_o, y_o)\Delta y, \qquad (2)$$

where $\Delta z = z - z_o$, $\Delta y = y - y_o$ and $\Delta x = x - x_o$. The expression in (2) motivates the definition of the differential of f:

$$df = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy$$

Math 32S. Rumbos

Do the following problems

1. Give the equation of the tangent plana to the graph of

$$z = \frac{1}{2}x^2 + 2y^2$$

at the point (2, 1, 4).

- 2. Give the linear approximation to the function given by $f(x, y) = x^2 y$, for $(x, y) \in \mathbb{R}^2$, at the point (3, 1).
- 3. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be given by

$$f(x,y) = \sqrt{x^2 + y^2}, \quad \text{ for all } (x,y) \in \mathbb{R}^2.$$

- (a) Give the differential of f at the point (3, 4).
- (b) Use the differential of f at (3, 4) to estimate f(2.98, 4.01).
- 4. Assume that the temperature in an unevenly heated plate is given by T(x, y)°C at every point (x, y) in the plate, where T is a function of two variables with continuous partial derivatives T_x and T_y . Assume that T(2, 1) = 135 °C, and that the partial derivatives of T at (2, 1) have values $T_x(2, 1) = 16$ and $T_y(2, 1) = -15$. Estimate the temperature at the point (2.04, 0.97).
- 5. Let p(A, D) denote the expression given the number π , where A denotes the area enclosed by a circle and D the diameter of the circle.
 - (a) Give and expression of p(A, D).
 - (b) Compute the differential of p.
 - (c) Assume that a percent error of 0.001 can be made when measuring the area enclosed by the circle, and a percent error of 0.0005 can be made when measuring the diameter. Use the differential computed in part (b) to estimate the error in computing π .