Assignment \#14

Due on Wednesday, March 25, 2015
Read Section 14.3, on Local Linearity and the Differential, in Calculus: Multivariable, by McCallum, Hughes-Hallett, Gleason, et al.

Background and Definitions.

- Linear approximation of a real valued function of two variables. Let $f: D \rightarrow \mathbb{R}$ be a real-valued function defined on some domain, D, in the $x y-$ plane, and let $\left(x_{o}, y_{o}\right)$ denote a point in D. Suppose that the partial derivatives of f exist and are continuous in D. Then, the linear approximation for f at $\left(x_{o}, y_{o}\right)$ is the linear function $L: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by
$L(x, y)=f\left(x_{o}, y_{o}\right)+\frac{\partial f}{\partial x}\left(x_{o}, y_{o}\right) \cdot\left(x-x_{o}\right)+\frac{\partial f}{\partial y}\left(x_{o}, y_{o}\right) \cdot\left(y-y_{o}\right), \quad$ for $(x, y) \in \mathbb{R}^{2}$.
$L(x, y)$ approximates $f(x, y)$ when (x, y) is very close to $\left(x_{o}, y_{o}\right)$. We write

$$
\begin{equation*}
f(x, y) \approx f\left(x_{o}, y_{o}\right)+\frac{\partial f}{\partial x}\left(x_{o}, y_{o}\right) \cdot\left(x-x_{o}\right)+\frac{\partial f}{\partial y}\left(x_{o}, y_{o}\right) \cdot\left(y-y_{o}\right) \tag{1}
\end{equation*}
$$

for (x, y) in D sufficiently close to $\left(x_{o}, y_{o}\right.$.

- Tangent plane to the graph of a function of two variables. The graph of the equation

$$
z=L(x, y)
$$

is a plane through $\left(x_{o}, y_{o}\right)$ called the tangent plane to the graph of $z=f(x, y)$ at the point $\left(x_{o}, y_{o}\right)$.

- The differential of a function of two variables. Writing $z=f(x, y)$ and $z_{o}=f\left(x_{o}, y_{o}\right)$, we can rewrite (1) as

$$
z \approx z_{o} \frac{\partial f}{\partial x}\left(x_{o}, y_{o}\right) \cdot\left(x-x_{o}\right)+\frac{\partial f}{\partial y}\left(x_{o}, y_{o}\right) \cdot\left(y-y_{o}\right)
$$

when (x, y) is sufficiently close to $\left(x_{o}, y_{o}\right)$, or

$$
\begin{equation*}
\Delta z \approx \frac{\partial f}{\partial x}\left(x_{o}, y_{o}\right) \Delta x+\frac{\partial f}{\partial y}\left(x_{o}, y_{o}\right) \Delta y \tag{2}
\end{equation*}
$$

where $\Delta z=z-z_{o}, \Delta y=y-y_{o}$ and $\Delta x=x-x_{o}$. The expression in (2) motivates the definition of the differential of f :

$$
d f=\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y
$$

Do the following problems

1. Give the equation of the tangent plana to the graph of

$$
z=\frac{1}{2} x^{2}+2 y^{2}
$$

at the point $(2,1,4)$.
2. Give the linear approximation to the function given by $f(x, y)=x^{2} y$, for $(x, y) \in$ \mathbb{R}^{2}, at the point $(3,1)$.
3. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be given by

$$
f(x, y)=\sqrt{x^{2}+y^{2}}, \quad \text { for all }(x, y) \in \mathbb{R}^{2}
$$

(a) Give the differential of f at the point $(3,4)$.
(b) Use the differential of f at $(3,4)$ to estimate $f(2.98,4.01)$.
4. Assume that the temperature in an unevenly heated plate is given by $T(x, y)$ ${ }^{\circ} \mathrm{C}$ at every point (x, y) in the plate, where T is a function of two variables with continuous partial derivatives T_{x} and T_{y}. Assume that $T(2,1)=135^{\circ} \mathrm{C}$, and that the partial derivatives of T at $(2,1)$ have values $T_{x}(2,1)=16$ and $T_{y}(2,1)=-15$. Estimate the temperature at the point $(2.04,0.97)$.

5 . Let $p(A, D)$ denote the expression given the number π, where A denotes the area enclosed by a circle and D the diameter of the circle.
(a) Give and expression of $p(A, D)$.
(b) Compute the differential of p.
(c) Assume that a percent error of 0.001 can be made when measuring the area enclosed by the circle, and a percent error of 0.0005 can be made when measuring the diameter. Use the differential computed in part (b) to estimate the error in computing π.

