Assignment #15

Due on Friday, April 10, 2015

Read Chapter 6, on *Linear Vector Fields*, in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Do the following problems

- 1. Let A be the 2 × 2 matrix given by $A = \begin{pmatrix} -1 & 1 \\ 5 & -1 \end{pmatrix}$. Let v and w denote the column vectors $v = \begin{pmatrix} 1 \\ 5 \end{pmatrix}$ and $w = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$. Compute Av and Aw.
- 2. Let A, v and w be as in Problem 1. Compute the vector 2v 3w and compute the product A(2v 3w). Verify that

$$A(2\mathbf{v} - 3\mathbf{w}) = 2A\mathbf{v} - 3A\mathbf{w}.$$

3. Find a condition on the scalars a, b, c and d so that the columns of the matrix

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

are not scalar multiples of each other; that is the column vectors of A do not lie on the same line.

Suggestion: Consider the cases a = 0 and $a \neq 0$ separately.

- 4. Let the matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ satisfy the condition you discovered in Problem 3. Show that the matrix equation $A \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ has only one solution; namely, $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$.
- 5. Let A denote the matrix in Problem 1. Let v_1 denote the first column of A and v_2 denote the second column of A. Find scalars c_1 and c_2 for which

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 = \begin{pmatrix} 4\\ 7 \end{pmatrix}.$$