Assignment #18

Due on Friday, April 17, 2015

Read Section 6.3, on *The Flow of Two-Dimensional Vector Fields*, in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Do the following problems

- 1. Let A be the 2×2 matrix $A = \begin{pmatrix} 0 & -2 \\ 1 & 3 \end{pmatrix}$. Find all eigenvalues of A and give corresponding eigenvectors.
- 2. Let A be the 2×2 matrix $A = \begin{pmatrix} 0 & -4 \\ 1 & 4 \end{pmatrix}$. Find all eigenvalues of A and give corresponding eigenvectors.
- 3. Suppose that a 2×2 matrix A has real eigenvalues, λ_1 and λ_2 , with $\lambda_1 \neq \lambda_2$. Let v_1 be an eigenvector corresponding to the eigenvalue λ_1 , and v_2 be an eigenvector corresponding to the eigenvalue λ_2 . Show that v_1 and v_2 cannot be multiples of each other.
- 4. In this problem and the next we come up with solutions to the system

$$\begin{cases}
\frac{dx}{dt} = \alpha x - \beta y; \\
\frac{dy}{dt} = \beta x + \alpha y,
\end{cases}$$
(1)

where $\alpha^2 + \beta^2 \neq 0$ and $\beta \neq 0$.

Make the change of variables $x = r \cos \theta$ and $y = r \sin \theta$, and verify that

$$\dot{r} = \dot{x}\cos\theta + \dot{y}\sin\theta,
\dot{\theta} = \frac{\dot{y}}{r}\cos\theta - \frac{\dot{x}}{r}\sin\theta,$$
(2)

where the dot on top of a symbol for a variable indicates the derivative of that variable with respect to t.

- 5. [Problem 4 Continued]
 - (a) Use the result in (2) to transform the system (1) into a system involving r and θ .
 - (b) Solve the system obtained in part (a) of Problem 5 for r and θ .
 - (c) Based on your solution in part (b), give the general solution to the system (1).
 - (d) Sketch the flow of the vector field associated with the system in (1) for $\alpha = 0$ and $\beta = 1$.