Assignment \#18

Due on Friday, April 17, 2015
Read Section 6.3, on The Flow of Two-Dimensional Vector Fields, in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Do the following problems

1. Let A be the 2×2 matrix $A=\left(\begin{array}{rr}0 & -2 \\ 1 & 3\end{array}\right)$. Find all eigenvalues of A and give corresponding eigenvectors.
2. Let A be the 2×2 matrix $A=\left(\begin{array}{rr}0 & -4 \\ 1 & 4\end{array}\right)$. Find all eigenvalues of A and give corresponding eigenvectors.
3. Suppose that a 2×2 matrix A has real eigenvalues, λ_{1} and λ_{2}, with $\lambda_{1} \neq \lambda_{2}$. Let v_{1} be an eigenvector corresponding to the eigenvalue λ_{1}, and v_{2} be an eigenvector corresponding to the eigenvalue λ_{2}. Show that v_{1} and v_{2} cannot be multiples of each other.
4. In this problem and the next we come up with solutions to the system

$$
\left\{\begin{align*}
\frac{d x}{d t} & =\alpha x-\beta y \tag{1}\\
\frac{d y}{d t} & =\beta x+\alpha y
\end{align*}\right.
$$

where $\alpha^{2}+\beta^{2} \neq 0$ and $\beta \neq 0$.
Make the change of variables $x=r \cos \theta$ and $y=r \sin \theta$, and verify that

$$
\begin{align*}
\dot{r} & =\dot{x} \cos \theta+\dot{y} \sin \theta \\
\dot{\theta} & =\frac{\dot{y}}{r} \cos \theta-\frac{\dot{x}}{r} \sin \theta \tag{2}
\end{align*}
$$

where the dot on top of a symbol for a variable indicates the derivative of that variable with respect to t.
5. [Problem 4 Continued]
(a) Use the result in (2) to transform the system (1) into a system involving r and θ.
(b) Solve the system obtained in part (a) of Problem 5 for r and θ.
(c) Based on your solution in part (b), give the general solution to the system (1).
(d) Sketch the flow of the vector field associated with the system in (1) for $\alpha=0$ and $\beta=1$.

