Assignment \#19

Due on Friday, April 24, 2015
Read on The Principle of Linearized Stability, in the class lecture notes at http://pages.pomona.edu/

Background and Definitions.

The Principle of Linearized Stability. For a the system

$$
\left\{\begin{align*}
\frac{d x}{d t} & =f(x, y) \tag{1}\\
\frac{d y}{d t} & =g(x, y)
\end{align*}\right.
$$

here $f: D \rightarrow \mathbb{R}$ and $g: D \rightarrow \mathbb{R}$ are continuous functions defined on an open subset, D, of \mathbb{R}^{2}, and which have continuous partial derivatives in D, an equilibrium point, (\bar{x}, \bar{y}), is a solution of the system of equations

$$
\left\{\begin{array}{l}
f(x, y)=0 \\
g(x, y)=0
\end{array}\right.
$$

Set

$$
F(x, y)=\binom{f(x, y)}{g(x, y)}, \quad \text { for all } \quad(x, y) \in D
$$

The linearization of the system in (1) around an equilibrium point (\bar{x}, \bar{y}) is the linear system

$$
\begin{equation*}
\binom{\dot{u}}{\dot{v}}=D F(\bar{x}, \bar{y})\binom{u}{v} \tag{2}
\end{equation*}
$$

where

$$
D F(\bar{x}, \bar{y})=\left(\begin{array}{ll}
\frac{\partial f}{\partial x}(\bar{x}, \bar{y}) & \frac{\partial f}{\partial y}(\bar{x}, \bar{y}) \\
\frac{\partial g}{\partial x}(\bar{x}, \bar{y}) & \frac{\partial g}{\partial y}(\bar{x}, \bar{y})
\end{array}\right)
$$

The Principle of Linearized Stability states that, for the case in which

$$
\operatorname{det}[D F(\bar{x}, \bar{y})] \neq 0
$$

and the eigenvalues of the matrix $D F(\bar{x}, \bar{y})$ have nonzero real part, then phase portrait of the system in (1) near an equilibrium (\bar{x}, \bar{y}) looks like the phase portrait of the linear system in (2) near the origin.

Do the following problems
In problems (1)-(5), given the two-dimensional system, (a) sketch the nullclines; (b) determine the critical points; (c) find the derivative of the vector field associated with the system; (d) determine the stability of the origin for each linearized system; (e) use the principle of linearized stability (when applicable) to determine the stability type of each equilibrium point of the non-linear system; and (f) sketch the phase portrait.

1. $\left\{\begin{array}{l}\dot{x}=-3 x+2 x y ; \\ \dot{y}=-4 y+3 x y .\end{array}\right.$
2. $\left\{\begin{array}{l}\dot{x}=x(1-2 y) ; \\ \dot{y}=y(x-1) .\end{array}\right.$
3. $\left\{\begin{array}{l}\dot{x}=y ; \\ \dot{y}=x-y-x^{3} .\end{array}\right.$
4. $\left\{\begin{array}{l}\dot{x}=y-x^{3} ; \\ \dot{y}=y-4 x .\end{array}\right.$
5. $\left\{\begin{array}{l}\dot{x}=x(1-2 x)-3 y ; \\ \dot{y}=y(x-1) .\end{array}\right.$
