Assignment \#4

Due on Friday, February 6, 2015

Read Section 3.2, on Differentiable Paths, in the class lecture notes at http://pages.pomona.edu/~ajr04747/
Read Section 17.2, on Motion, Velocity and Acceleration, in Calculus: Multivariable, by McCallum, Hughes-Hallett, Gleason, et al.

Background and Definitions.

- Velocity and Acceleration. A path $\vec{r}: J \rightarrow \mathbb{R}^{2}$ may be used to model the motion of particle in the plane. In this case, $\vec{r}(t)=(x(t), y(t))$ locates the particle at time t. If x and y are twice differentiable, then

$$
\vec{r}^{\prime}(t)=\left(x^{\prime}(t), y^{\prime}(t)\right), \quad \text { for } t \in J,
$$

is called the velocity of the particle and is usually denoted by $\vec{v}(t)$. The second derivative,

$$
\vec{r}^{\prime \prime}(t)=\left(x^{\prime \prime}(t), y^{\prime \prime}(t)\right), \quad \text { for } t \in J
$$

is called the acceleration of the particle and is usually denoted by $\vec{a}(t)$.

- Tangent Line to a Curve. Suppose a curve C is parametrized by a differentiable path \vec{r}. Let $\left(x_{o}, y_{o}\right) \in C$ be such that $\left(x_{o}, y_{o}\right)=\vec{r}\left(t_{o}\right)$, for some $t_{o} \in J$. Then, the derivative vector

$$
\vec{r}^{\prime}\left(t_{o}\right)=\left(x^{\prime}\left(t_{o}\right), y^{\prime}\left(t_{o}\right)\right)
$$

is tangent to the curve C at $\left(x_{o}, y_{o}\right)$. The line parametrized by

$$
\left(x_{o}, y_{o}\right)+\left(t-t_{o}\right) \vec{r}^{\prime}\left(t_{o}\right), \quad \text { for } t \in \mathbb{R},
$$

is the tangent line to C at the point $\left(x_{o}, y_{o}\right)$.

- Linear Approximation. Let $\vec{r}: J \rightarrow \mathbb{R}^{2}$ denote a differentiable path defined on some open interval t_{o}. Let $t_{o} \in J$. The expression

$$
\vec{\ell}(t)=\left(x_{o}, y_{o}\right)+\left(t-t_{o}\right) \vec{r}^{\prime}\left(t_{o}\right), \quad \text { for } t \in \mathbb{R}
$$

is called the linear approximation to the path \vec{r} at t_{o}.

Do the following problems

1. A particle moves in the $x y$-plane along a path determined by the parametric equations

$$
\left\{\begin{array}{l}
x=t ; \\
y=t^{3}-t,
\end{array} \quad \text { for } t \in \mathbb{R}\right.
$$

Compute the velocity and acceleration of the particle.
2. A particle moves in the $x y$-plane along a path determined by the parametric equations

$$
\left\{\begin{array}{l}
x=3 \cos t ; \\
y=4 \sin t,
\end{array} \quad \text { for } t \in \mathbb{R}\right.
$$

Compute the velocity and acceleration of the particle.
3. A particle moves in the $x y$-plane along a path determined by the parametric equations

$$
\left\{\begin{array}{l}
x=3 \cos \left(t^{2}\right) ; \\
y=4 \sin \left(t^{2}\right),
\end{array} \quad \text { for } t \in \mathbb{R}\right.
$$

Compute the velocity and acceleration of the particle.
4. A particle moves in the $x y$-plane along a path determined by the parametric equations

$$
\left\{\begin{array}{l}
x=t \cos t ; \\
y=t \sin t,
\end{array} \quad \text { for } 0 \leqslant t \leqslant 4 \pi .\right.
$$

(a) Sketch the curve parametrized by this path.
(b) Compute the velocity of the particle at any time $t \in(0,4 \pi)$.
5. A particle moves in the $x y$-plane along a path determined by the parametric equations

$$
\left\{\begin{array}{l}
x=a(t-\sin t) ; \\
y=a(1-\cos t),
\end{array} \quad \text { for } 0 \leqslant t \in \mathbb{R}\right.
$$

where a is a positive number.
Give the tangent line approximations to the path when t is $\pi / 4$ and when $t=\pi$.

