Assignment \#5

Due on Monday, February 9, 2015
Read Section 3.3, on Length along Curves, in the class lecture notes at http://pages.pomona.edu/~ajr04747/
Read Section 17.2, on Motion, Velocity and Acceleration, in Calculus: Multivariable, by McCallum, Hughes-Hallett, Gleason, et al.

Background and Definitions.

- Norm of Vectors. Given a vector $\vec{v}=(a, b)$ in the plane, its norm (denoted by $\|\vec{v}\|)$ is defined by

$$
\|\vec{v}\|=\sqrt{a^{2}+b^{2}} .
$$

Geometrically, $\|\vec{v}\|$ gives the length of the vector \vec{v}, or the distance from the tip of \vec{v} when its tail is placed at the origin $O(0,0)$.
If $\|\vec{v}\|=1$, we say that \vec{v} is a unit vector.

- Distance between Points. Given points P and Q in the plane, the distance from P to Q, denoted by $\operatorname{dist}(P, Q)$ is given by

$$
\operatorname{dist}(P, Q)=\|\overrightarrow{O Q}-\overrightarrow{O P}\|
$$

- Arclength. Let C denote a curve parametrized by the differentiable path $\vec{r}:[a, b] \rightarrow \mathbb{R}^{2}$, where a and b are real numbers with $a<b$. The arclength along the curve C, denoted by $\ell(C)$, is given by

$$
\ell(C)=\int_{a}^{b}\left\|\vec{r}^{\prime}(t)\right\| d t
$$

provided that the integral exists.

Do the following problems

1. Let J denote an open interval in \mathbb{R}, and $\vec{r}: J \rightarrow \mathbb{R}^{2}$ be a differentiable path with continuous derivative \vec{r}^{\prime}. For fixed $a \in J$, define

$$
s(t)=\int_{a}^{t}\left\|\vec{r}^{\prime}(\tau)\right\| \mathrm{d} \tau \quad \text { for all } t \in J
$$

Show that s is differentiable and compute $s^{\prime}(t)$ for all $t \in J$.
2. Let \vec{r} and s be as defined in the previous problem. Suppose, in addition, that $\vec{r}^{\prime}(t)$ is never the zero vector for all t in J. Show that s is a strictly increasing function of t and that it is, therefore, one-to-one.
3. Let \vec{r} and s be as defined in Problem 1. We can re-parameterize \vec{r} by using s as a parameter. We therefore obtain $\vec{r}(s)$, where s is the arc length parameter. Differentiate the expression

$$
\vec{r}(s(t))=\vec{r}(t)
$$

with respect to t using the Chain Rule. Conclude that, if $\vec{r}^{\prime}(t)$ is never the zero vector for all t in J, then $\vec{r}^{\prime}(s)$ is always a unit vector.
The vector $\vec{r}^{\prime}(s)$ is called the unit tangent vector to the path \vec{r}.
4. For a and b, positive real numbers, the expression

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

defines an ellipse in the $x y$-plane \mathbb{R}^{2}.
Sketch the ellipse, give a parametrization for it, and set up the integral that yields its arc length. Do not evaluate the integral.
5. Let $\vec{r}:[-1,2] \rightarrow \mathbb{R}^{2}$ be defined by $\vec{r}(t)=t \widehat{i}+t^{2} \widehat{j}$ for all $t \in[-1,2]$. Describe the curve parametrized by \vec{r} and compute the arc length of the curve.

