Assignment \#7

Due on Monday, February 16, 2015
Read Chapter 4, on Vector Fields, in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Read Section 17.4, on The Flow of a Vector Field, in Calculus: Multivariable, by McCallum, Hughes-Hallett, Gleason, et al.

Background and Definitions.

Flow of a Vector Field. Given a vector field

$$
\vec{F}(x, y)=f(x, y) \widehat{i}+g(x, y) \widehat{j}
$$

where f and g are real valued functions defined on a subset of the plane, the flow of \vec{F} is the set of parametrized curves $(x(t), y(t))$ resulting from solving the pair of equations

$$
\left\{\begin{aligned}
\frac{d x}{d t} & =f(x, y) \\
\frac{d y}{d t} & =g(x, y)
\end{aligned}\right.
$$

Do the following problems

1. Sketch the flow of the vector field

$$
\vec{F}(x, y)=x \widehat{i}-y \widehat{j} .
$$

2. Verify that the parametric equations

$$
\begin{aligned}
& x(t)=A \cos (t+\phi) ; \\
& y(t)=A \sin (t+\phi),
\end{aligned} \quad \text { for } t \in \mathbb{R}
$$

where A and ϕ are constants, are the flow of the vector field

$$
\vec{F}(x, y)=-\widehat{\hat{i}}+x \widehat{j} .
$$

Sketch the flow of the field.
3. Compute the flow of the field

$$
\vec{F}(x, y)=a \widehat{i}+b \widehat{j}
$$

where a and b are constants, and sketch it.
4. Compute the flow of the field

$$
\vec{F}(x, y)=x \widehat{i}
$$

and sketch it.
5. Verify that the parametric equations

$$
\begin{aligned}
& x(t)=a\left(e^{t}+e^{-t}\right) ; \\
& y(t)=b\left(e^{t}-e^{-t}\right),
\end{aligned} \quad \text { for } t \in \mathbb{R}
$$

where a and b are constants, are the flow of the vector field

$$
\vec{F}(x, y)=y \widehat{i}+x \widehat{j} .
$$

Sketch the flow of the field.

