Review Problems for Exam 1

1. Sketch the curve C parametrized by

$$
\begin{aligned}
& x=\sin ^{2}(t) ; \\
& y=\cos ^{2}(t), \quad \text { for }-\frac{\pi}{2} \leqslant t \leqslant \frac{\pi}{2} . . . ~
\end{aligned}
$$

2. A curve C is parametrized by the differentiable path given by

$$
\vec{r}(t)=\left(3 t^{2}, 2+5 t\right), \quad \text { for } t \in \mathbb{R}
$$

Sketch the curve C in the $x y$-plane. Describe the curve.
3. Sketch the curve C parametrized by

$$
\begin{aligned}
& x=2+3 \cos t ; \\
& y=1+\sin t,
\end{aligned} \quad \text { for } 0 \leqslant t \leqslant 2 \pi
$$

Describe the curve.
4. Give a parametrization for the portion of the circle of radius 2 centered at $(1,1)$ from the point $P(1,3)$ to the point $Q(3,1)$.
5. Let $P\left(x_{1}, y_{1}\right)$ and $Q\left(x_{2}, y_{2}\right)$ denote distinct points in the plane. Give a parametrization of the directed line segment $\overrightarrow{P Q}$.
6. Compute and sketch the flow of the vector field

$$
\vec{F}(x, y)=-2 x \widehat{i}+y \widehat{j}, \quad \text { for }(x, y) \in \mathbb{R}^{2}
$$

7. Compute and sketch the flow of the vector field

$$
\vec{F}(x, y)=-2 x \widehat{i}-2 y \widehat{j}, \quad \text { for }(x, y) \in \mathbb{R}^{2}
$$

8. Let C denote the unit circle in the $x y$-plane centered at the origin. Give the coordinates of the points on C at which the tangent line is parallel to the line $y=x$.
9. Give the linear approximation to the path $\vec{r}(t)=\left(t^{3}, 2+t^{2}\right)$, for $t \in \mathbb{R}$, at the point (1,3).
10. Compute the arc length along the curve parametrized by

$$
\begin{aligned}
& x=r \cos t ; \\
& y=r \sin t
\end{aligned} \quad \text { for } 0 \leqslant t \leqslant \theta
$$

where θ is a given positive real number.

