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Review Problems for Final Exam

1. Let f(x, y) = x2 − y2 for all (x, y) ∈ R2.

(a) Compute the gradient field F (x, y) = ∇f(x, y) for all (x, y) ∈ R2.

(b) Sketch the flow of the vector field F (x, y) given in part (a).

2. Let f : R2 → R be a real valued function with continuous second partial deriva-
tives. Define the negative gradient vector field

F (x, y) = −∇f(x, y), for all (x, y) ∈ R2. (1)

(a) Let (x(t), y(t)) denote a flow curve of the Field given in (1) that contains
no equilibrium points of (1) the system(

ẋ
ẏ

)
= −∇f(x, y). (2)

Show that f is strictly decreasing (with increasing t) along this trajectory.

(b) Let (x(t), y(t)) denote a solution curve of the system in (2) that contains
no equilibrium points of (2). Explain why this trajectory cannot be a cycle
(a closed curve, or a loop).

3. The system of differential equations
dx

dt
= x(2− x− y);

dy

dt
= y(3− 2x− y)

describes competing species of densities x > 0 and y > 0. Explain why these
equations make it mathematically possible, but extremely unlikely, for both
species to survive.

4. Let C denote the ellipse given by the equation

4x2 + y2 = 4,

and let f : R2 → R be the linear function given by

f(x, y) = 4x+ 7y, for all (x, y) ∈ R2.

Find points on C at which the gradient of f is perpendicular to C.

Suggestion: Let g : R2 → R be given by g(x, y) = 4x2 + y2, for all (x, y) ∈ R2.
Observe that C is a level set of g.
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5. Consider the Lotka–Volterra system
dx

dt
= αx− βxy;

dy

dt
= δxy − γy,

(3)

where the parameters α, β, γ and δ are assumed to be positive constants. Let
D = {(x, y) ∈ R2 | x > 0, y > 0}, and define H : R2 → R by

H(x, y) = δx− γ ln(x) + βy − α ln(y), for (x, y) ∈ D. (4)

(a) Compute the partial derivatives

∂H

∂x
,

∂H

∂y
,

∂2H

∂x2
,

∂2H

∂y∂x
,

∂2H

∂x∂y
, and

∂2H

∂y2
,

for (x, y) ∈ D.

(b) Find points in D at which the gradient of H is the zero vector.

(c) Let (x(t), y(t) denote a solution curve of the Lotka–Volterra system in (3).
Show that the function H defined in (4) is constant on the curve.

Suggestion: Use the Chain Rule to compute

d

dt
[H(x(t), y(t))].

(d) Verify that the system in (3) has only one equilibrium point in D; call it
(x, y).

(e) Show that H has a minimum value at the equilibrium point (x, y) found
in part (d). Conclude therefore that the solution curves of the system in
(3) near (x, y) are closed curves. Hence (x, y) is a center.


