Review Problems for Final Exam

- 1. Let $f(x,y) = x^2 y^2$ for all $(x,y) \in \mathbb{R}^2$.
 - (a) Compute the gradient field $F(x, y) = \nabla f(x, y)$ for all $(x, y) \in \mathbb{R}^2$.
 - (b) Sketch the flow of the vector field F(x, y) given in part (a).
- 2. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be a real valued function with continuous second partial derivatives. Define the negative gradient vector field

$$F(x,y) = -\nabla f(x,y), \quad \text{for all } (x,y) \in \mathbb{R}^2.$$
(1)

(a) Let (x(t), y(t)) denote a flow curve of the Field given in (1) that contains no equilibrium points of (1) the system

$$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = -\nabla f(x, y). \tag{2}$$

Show that f is strictly decreasing (with increasing t) along this trajectory.

- (b) Let (x(t), y(t)) denote a solution curve of the system in (2) that contains no equilibrium points of (2). Explain why this trajectory cannot be a cycle (a closed curve, or a loop).
- 3. The system of differential equations

$$\begin{cases} \frac{dx}{dt} &= x(2-x-y); \\ \frac{dy}{dt} &= y(3-2x-y) \end{cases}$$

describes competing species of densities $x \ge 0$ and $y \ge 0$. Explain why these equations make it mathematically possible, but extremely unlikely, for both species to survive.

4. Let C denote the ellipse given by the equation

$$4x^2 + y^2 = 4$$

and let $f: \mathbb{R}^2 \to \mathbb{R}$ be the linear function given by

$$f(x,y) = 4x + 7y$$
, for all $(x,y) \in \mathbb{R}^2$.

Find points on C at which the gradient of f is perpendicular to C.

Suggestion: Let $g: \mathbb{R}^2 \to \mathbb{R}$ be given by $g(x, y) = 4x^2 + y^2$, for all $(x, y) \in \mathbb{R}^2$. Observe that C is a level set of g.

Math 32S. Rumbos

5. Consider the Lotka–Volterra system

$$\begin{cases} \frac{dx}{dt} = \alpha x - \beta xy; \\ \frac{dy}{dt} = \delta xy - \gamma y, \end{cases}$$
(3)

where the parameters α , β , γ and δ are assumed to be positive constants. Let $D = \{(x, y) \in \mathbb{R}^2 \mid x > 0, y > 0\}$, and define $H \colon \mathbb{R}^2 \to \mathbb{R}$ by

$$H(x,y) = \delta x - \gamma \ln(x) + \beta y - \alpha \ln(y), \quad \text{for } (x,y) \in D.$$
(4)

(a) Compute the partial derivatives

$$\frac{\partial H}{\partial x}$$
, $\frac{\partial H}{\partial y}$, $\frac{\partial^2 H}{\partial x^2}$, $\frac{\partial^2 H}{\partial y \partial x}$, $\frac{\partial^2 H}{\partial x \partial y}$, and $\frac{\partial^2 H}{\partial y^2}$,

for $(x, y) \in D$.

- (b) Find points in D at which the gradient of H is the zero vector.
- (c) Let (x(t), y(t)) denote a solution curve of the Lotka–Volterra system in (3). Show that the function H defined in (4) is constant on the curve. Suggestion: Use the Chain Rule to compute

$$\frac{d}{dt}[H(x(t), y(t))].$$

- (d) Verify that the system in (3) has only one equilibrium point in D; call it $(\overline{x}, \overline{y})$.
- (e) Show that H has a minimum value at the equilibrium point $(\overline{x}, \overline{y})$ found in part (d). Conclude therefore that the solution curves of the system in (3) near $(\overline{x}, \overline{y})$ are closed curves. Hence $(\overline{x}, \overline{y})$ is a center.