Review Problems for Final Exam

1. Let $f(x, y)=x^{2}-y^{2}$ for all $(x, y) \in \mathbb{R}^{2}$.
(a) Compute the gradient field $F(x, y)=\nabla f(x, y)$ for all $(x, y) \in \mathbb{R}^{2}$.
(b) Sketch the flow of the vector field $F(x, y)$ given in part (a).
2. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a real valued function with continuous second partial derivatives. Define the negative gradient vector field

$$
\begin{equation*}
F(x, y)=-\nabla f(x, y), \quad \text { for all }(x, y) \in \mathbb{R}^{2} \tag{1}
\end{equation*}
$$

(a) Let $(x(t), y(t))$ denote a flow curve of the Field given in (1) that contains no equilibrium points of (1) the system

$$
\begin{equation*}
\binom{\dot{x}}{\dot{y}}=-\nabla f(x, y) . \tag{2}
\end{equation*}
$$

Show that f is strictly decreasing (with increasing t) along this trajectory.
(b) Let $(x(t), y(t))$ denote a solution curve of the system in (2) that contains no equilibrium points of (2). Explain why this trajectory cannot be a cycle (a closed curve, or a loop).
3. The system of differential equations

$$
\left\{\begin{aligned}
\frac{d x}{d t} & =x(2-x-y) \\
\frac{d y}{d t} & =y(3-2 x-y)
\end{aligned}\right.
$$

describes competing species of densities $x \geqslant 0$ and $y \geqslant 0$. Explain why these equations make it mathematically possible, but extremely unlikely, for both species to survive.
4. Let C denote the ellipse given by the equation

$$
4 x^{2}+y^{2}=4
$$

and let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be the linear function given by

$$
f(x, y)=4 x+7 y, \quad \text { for all }(x, y) \in \mathbb{R}^{2}
$$

Find points on C at which the gradient of f is perpendicular to C.
Suggestion: Let $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be given by $g(x, y)=4 x^{2}+y^{2}$, for all $(x, y) \in \mathbb{R}^{2}$. Observe that C is a level set of g.
5. Consider the Lotka-Volterra system

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=\alpha x-\beta x y \tag{3}\\
\frac{d y}{d t}=\delta x y-\gamma y
\end{array}\right.
$$

where the parameters α, β, γ and δ are assumed to be positive constants. Let $D=\left\{(x, y) \in \mathbb{R}^{2} \mid x>0, y>0\right\}$, and define $H: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
H(x, y)=\delta x-\gamma \ln (x)+\beta y-\alpha \ln (y), \quad \text { for }(x, y) \in D \tag{4}
\end{equation*}
$$

(a) Compute the partial derivatives

$$
\frac{\partial H}{\partial x}, \quad \frac{\partial H}{\partial y}, \quad \frac{\partial^{2} H}{\partial x^{2}}, \quad \frac{\partial^{2} H}{\partial y \partial x}, \quad \frac{\partial^{2} H}{\partial x \partial y}, \quad \text { and } \quad \frac{\partial^{2} H}{\partial y^{2}},
$$

for $(x, y) \in D$.
(b) Find points in D at which the gradient of H is the zero vector.
(c) Let $(x(t), y(t)$ denote a solution curve of the Lotka-Volterra system in (3). Show that the function H defined in (4) is constant on the curve.
Suggestion: Use the Chain Rule to compute

$$
\frac{d}{d t}[H(x(t), y(t))] .
$$

(d) Verify that the system in (3) has only one equilibrium point in D; call it (\bar{x}, \bar{y}).
(e) Show that H has a minimum value at the equilibrium point (\bar{x}, \bar{y}) found in part (d). Conclude therefore that the solution curves of the system in (3) near (\bar{x}, \bar{y}) are closed curves. Hence (\bar{x}, \bar{y}) is a center.

