Assignment #13

Due on Wednesday, April 5, 2017

Read Section 5.3 on *Analysis of General Systems* in the class lecture notes at http://pages.pomona.edu/~ajr04747/.

Read Section 5.1 on *Equilibrium Point Analysis* in Blanchard, Devaney and Hall.

Read Section 5.2 on Qualitative Analysis in Blanchard, Devaney and Hall.

Do the following problems

In problems (1)–(5), for the given the two–dimensional system, (a) sketch the null-clines; (b) determine the equilibrium points; (c) find the derivative of the vector field associated with the system; (d) determine the stability of the origin for each linearized system; (e) use the principle of linearized stability (when applicable) to determine the stability type of each equilibrium point of the non–linear system; and (f) sketch the phase portrait.

1.
$$\begin{cases} \dot{x} = -3x + 2xy; \\ \dot{y} = -4y + 3xy. \end{cases}$$

2.
$$\begin{cases} \dot{x} = x(1-2y); \\ \dot{y} = y(x-1). \end{cases}$$

3.
$$\begin{cases} \dot{x} = y; \\ \dot{y} = x - y - x^3. \end{cases}$$

4.
$$\begin{cases} \dot{x} = y - x^3; \\ \dot{y} = y - 4x. \end{cases}$$

5.
$$\begin{cases} \dot{x} = x(1-2x) - 3y; \\ \dot{y} = y(x-1). \end{cases}$$