Solutions to Review Problems for Exam 2

1. Compute the fundamental matrix for the system

$$\begin{cases} \dot{x} = -3x - y; \\ \dot{y} = 4x - 3y \end{cases}$$
(1)

Give the general solution of the system and determine the nature of the stability of the equilibrium point (0, 0).

Solution: Write the system in vector form

$$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = A \begin{pmatrix} x \\ y \end{pmatrix},$$

where A is the matrix

$$A = \begin{pmatrix} -3 & -1 \\ 4 & -3 \end{pmatrix}.$$
 (2)

The characteristic polynomial of A in (2) is

$$p_A(\lambda) = \lambda^2 + 6\lambda + 13,$$

which can be written as

$$p_A(\lambda) = (\lambda^2 + 6\lambda + 9) + 4,$$

or

$$p_A(\lambda) = (\lambda + 3)^2 + 4. \tag{3}$$

It follows from (3) that the eigenvalues of A in (2) are

$$\lambda_1 = -3 + 2i \quad \text{and} \quad \lambda_2 = -3 - 2i \tag{4}$$

We look for an invertible matrix Q such that

$$Q^{-1}AQ = J,$$

where

$$J = \begin{pmatrix} -3 & -2\\ 2 & -3 \end{pmatrix} \tag{5}$$

In order to do this, we first find an eigenvector $w_1 \in \mathbb{C}^2$ corresponding to λ_1 in (4). We get

$$w_1 = \begin{pmatrix} i \\ 2 \end{pmatrix}$$
.

Then, set

$$v_1 = \operatorname{Im}(w_1) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 and $v_2 = \operatorname{Re}(w_1) = \begin{pmatrix} 0 \\ 2 \end{pmatrix}$,

and

$$Q = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}; \tag{6}$$

so that

$$Q^{-1} = \begin{pmatrix} 1 & 0\\ 0 & 1/2 \end{pmatrix}.$$
 (7)

The fundamental matrix, E_J associated with J in (5) is

$$E_{J}(t) = e^{-3t} \begin{pmatrix} \cos 2t & -\sin 2t \\ \sin 2t & \cos 2t \end{pmatrix}, \quad \text{for all } t \in \mathbb{R}.$$
(8)

Using (5), (6) and (8), we can compute the fundamental matrix corresponding to A by using

$$E_{\scriptscriptstyle A}(t) = Q E_{\scriptscriptstyle J}(t) Q^{-1}, \quad \text{ for all } t \in \mathbb{R}.$$

We get

$$E_A(t) = e^{-3t} \begin{pmatrix} \cos 2t & -\frac{1}{2}\sin 2t \\ 2\sin 2t & \cos 2t \end{pmatrix}, \quad \text{for all } t \in \mathbb{R},$$

is the fundamental matrix for the system in (1).

The general solution of the system in (1) is then

$$\begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = E_{A}(t) \begin{pmatrix} c_{1} \\ c_{2} \end{pmatrix},$$

where c_1 and c_2 are arbitrary constants, or

$$\begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = \begin{pmatrix} c_1 e^{-3t} \cos 2t - \frac{c_2}{2} e^{-3t} \sin 2t \\ 2c_1 e^{-3t} \sin 2t + c_2 e^{-3t} \cos 2t \end{pmatrix}, \quad \text{for all } t \in \mathbb{R},$$

where c_1 and c_2 are arbitrary constants.

Since the eigenvalues of A in (4) are complex with negative real part, (0,0) is a spiral sink.

2. Compute the general solution of the system

$$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = \begin{pmatrix} 1 & -4 \\ 4 & -7 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}, \tag{9}$$

and describe the nature of the stability of its equilibrium point. Sketch the phase portrait.

Solution: We first compute the fundamental matrix for the system in (9). Set

$$A = \begin{pmatrix} 1 & -4\\ 4 & -7 \end{pmatrix}. \tag{10}$$

The characteristic polynomial of A in (10) is

$$p_A(\lambda) = \lambda^2 + 6\lambda + 9,$$

which we can write as

$$p_A(\lambda) = (\lambda + 3)^2.$$

Thus,

$$\lambda = -3 \tag{11}$$

is the only eigenvalue of the matrix A in (10).

Next, we find an eigenvector corresponding to $\lambda = -3$, by solving the homogeneous system

$$(A - \lambda I)\mathbf{v} = \mathbf{0},\tag{12}$$

with $\lambda = -3$. We get the vector

$$\mathbf{v}_1 = \begin{pmatrix} 1\\1 \end{pmatrix} \tag{13}$$

There is no basis for \mathbb{R}^2 made up of eigenvectors of A; therefore, A is not diagonalizable. We therefore need to find a solution, v_2 , of the nonhomogeneous system

$$(A - \lambda I)\mathbf{v} = \mathbf{v}_1,\tag{14}$$

with $\lambda = -3$. A solution of (14) is

$$\mathbf{v}_2 = \begin{pmatrix} 1/4\\ 0 \end{pmatrix}. \tag{15}$$

Set $Q = \begin{bmatrix} v_1 & v_2 \end{bmatrix}$, where v_1 and v_2 are given in (13) and (15), respectively; so that,

$$Q = \begin{pmatrix} 1 & 1/4 \\ 1 & 0 \end{pmatrix}. \tag{16}$$

Next, set

$$J = Q^{-1}AQ, (17)$$

$$Q^{-1} = \begin{pmatrix} 0 & 1\\ -4 & 4 \end{pmatrix}. \tag{18}$$

It follows from (10), (17), (16) and (18) that

$$J = \begin{pmatrix} -3 & 1\\ 0 & -3 \end{pmatrix}.$$
 (19)

The fundamental matrix, $E_J(t)$, corresponding to the matrix J in (19) is given by

$$E_{J}(t) = \begin{pmatrix} e^{-3t} & te^{-3t} \\ 0 & e^{-3t} \end{pmatrix}, \quad \text{for all } t \in \mathbb{R}.$$
 (20)

The fundamental matrix corresponding to the matrix A in (10) is then given by

$$E_{\scriptscriptstyle A}(t) = Q E_{\scriptscriptstyle J}(t) Q^{-1}, \quad \text{ for all } t \in \mathbb{R},$$

where $Q, E_{J}(t)$ and Q^{-1} are given in (16), (20) and (18), respectively. We obtain

$$E_{A}(t) = \begin{pmatrix} e^{-3t} + 4te^{-3t} & -4te^{-3t} \\ 4te^{-3t} & e^{-3t} - 4te^{-3t} \end{pmatrix}, \text{ for all } t \in \mathbb{R}.$$
 (21)

The general solution of the system in (9) is given by

$$\begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = E_A(t) \begin{pmatrix} c_1 \\ c_2 \end{pmatrix}, \quad \text{for all } t \in \mathbb{R},$$

for constants c_1 and c_2 , and where $E_A(t)$ is given in (21).

Since the only eigenvalue of A in (11) is negative, it follows that (0,0) is asymptotically stable.

A sketch of the phase portrait of the system in (9) is shown in Figure 1. The sketch also shows the nullclines of the system. \Box

3. Give the general solution of the system

$$\begin{cases} \dot{x} = 2x + y + 1; \\ \dot{y} = x - 2y - 1. \end{cases}$$
(22)

Determine the nature of the stability of the equilibrium point of the system. Sketch the phase portrait. Solution: Write the system in matrix form

$$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = A \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} b_1(t) \\ b_2(t) \end{pmatrix},$$
(23)

where

$$A = \begin{pmatrix} 2 & 1\\ 1 & -2 \end{pmatrix} \tag{24}$$

and

$$\begin{pmatrix} b_1(t) \\ b_2(t) \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \quad \text{for all } t \in \mathbb{R}.$$
 (25)

Next, compute the fundamental matrix $E_A(t)$ associated with A. To do this, we first compute the characteristic polynomial of A,

$$p_A(\lambda) = \lambda^2 - 5,$$

from which we get that

$$\lambda_1 = -\sqrt{5}$$
 and $\lambda_2 = \sqrt{5}$,

are the eigenvalues of A given in (24). Corresponding eigenvectors are

$$\mathbf{v}_1 = \begin{pmatrix} 2 - \sqrt{5} \\ 1 \end{pmatrix}$$
 and $\mathbf{v}_2 = \begin{pmatrix} 2 + \sqrt{5} \\ 1 \end{pmatrix}$. (26)

Thus, setting $Q = \begin{bmatrix} v_1 & v_2 \end{bmatrix}$, where v_1 and v_2 are as given in (26); so that,

$$Q = \begin{pmatrix} 2 - \sqrt{5} & 2 + \sqrt{5} \\ 1 & 1 \end{pmatrix}, \tag{27}$$

we obtain that

$$Q^{-1} = \begin{pmatrix} -\frac{1}{2\sqrt{5}} & \frac{1}{2} + \frac{1}{\sqrt{5}} \\ \\ \frac{1}{2\sqrt{5}} & \frac{1}{2} - \frac{1}{\sqrt{5}} \end{pmatrix},$$
(28)

and

$$Q^{-1}AQ = J = \begin{pmatrix} -\sqrt{5} & 0\\ 0 & \sqrt{5} \end{pmatrix}.$$
 (29)

Thus, A is diagonalizable.

Math 102. Rumbos

The fundamental matrix associated with J given in (29) is

$$E_{J}(t) = \begin{pmatrix} e^{-\sqrt{5}t} & 0\\ 0 & e^{\sqrt{5}t} \end{pmatrix}, \quad \text{ for all } t \in \mathbb{R}.$$

We can use this matrix to obtain the fundamental matrix associated with A,

$$E_A(t) = Q E_J(t) Q^{-1},$$

where Q and Q^{-1} are given in (27) and (28), respectively, to obtain

$$E_A(t) = \begin{pmatrix} \left(\frac{1}{2} - \frac{1}{\sqrt{5}}\right)e^{-\sqrt{5}t} + \left(\frac{1}{2} + \frac{1}{\sqrt{5}}\right)e^{\sqrt{5}t} & -\frac{1}{2\sqrt{5}}e^{-\sqrt{5}t} + \frac{1}{2\sqrt{5}}e^{\sqrt{5}t} \\ -\frac{1}{2\sqrt{5}}e^{-\sqrt{5}t} + \frac{1}{2\sqrt{5}}e^{\sqrt{5}t} & \left(\frac{1}{2} + \frac{1}{\sqrt{5}}\right)e^{-\sqrt{5}t} + \left(\frac{1}{2} - \frac{1}{\sqrt{5}}\right)e^{\sqrt{5}t} \\ (30) \end{pmatrix},$$

for $t \in \mathbb{R}$.

The general solution of the system in (23) is then given by

$$\begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = E_A(t) \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} + E_A(t) \int_0^t E_A(-\tau) \begin{pmatrix} b_1(\tau) \\ b_2(\tau) \end{pmatrix} d\tau, \quad \text{for } t \in \mathbb{R}, \quad (31)$$

where c_1 and c_2 are arbitrary constants, and the vector-values function $\begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$ is given in (25).

We first determine the nullclines:

$$\dot{x} = 0$$
-nullcline: $2x + y = -1$
 $\dot{y} = 0$ -nullcline: $x - 2y = 1$

These lines are sketched in Figure 2. The nullclines intersect at the equilibrium point

$$(\overline{x}, \overline{y}) = \left(-\frac{1}{5}, -\frac{3}{5}\right). \tag{32}$$

Since the eigenvalues of A are

 $\lambda = \pm \sqrt{5},$

 $(\overline{x}, \overline{y})$ is a saddle point for the system in (22). A sketch of the phase portrait of the system in (22) is shown in Figure 2.

4. Let A denote the 2×2 matrix, $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, where a, b and c are real numbers, and consider the linear system of differential equations

$$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = A \begin{pmatrix} x \\ y \end{pmatrix}. \tag{33}$$

Let $E_{A}(t)$, for $t \in \mathbb{R}$, denote the fundamental matrix of the system in (33).

(a) Put $W(t) = \det(E_A(t))$, for all $t \in \mathbb{R}$. Verify that W solves the differential equation

$$\frac{dW}{dt} = (\lambda_1 + \lambda_2)W, \quad \text{for all } t \in \mathbb{R},$$
(34)

where λ_1 and λ_2 are the eigenvalues of A. **Solution**: Write

$$E_{A}(t) = \begin{pmatrix} x_{1}(t) & x_{2}(t) \\ y_{1}(t) & y_{2}(t) \end{pmatrix}, \quad \text{for } t \in \mathbb{R},$$
(35)

where the vector-valued functions

$$\begin{pmatrix} x_1(t) \\ y_1(t) \end{pmatrix}$$
 and $\begin{pmatrix} x_2(t) \\ y_2(t) \end{pmatrix}$, for $t \in \mathbb{R}$,

are solutions of the system in (33),

.

$$\begin{pmatrix} x_1(0) \\ y_1(0) \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} x_2(0) \\ y_2(0) \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
(36)

We then have that

$$\begin{cases} x'_1(t) = ax_1(t) + by_1(t); \\ y'_1(t) = cx_1(t) + dy_1(t), \end{cases} \quad \text{for } t \in \mathbb{R},$$
(37)

and

$$\begin{cases} x'_2(t) = ax_2(t) + by_2(t); \\ y'_2(t) = cx_2(t) + dy_2(t), \end{cases} \quad \text{for } t \in \mathbb{R}.$$
(38)

Now, since $W(t) = \det(E_A(t))$, for all $t \in \mathbb{R}$, it follows from (35) that

$$W(t) = x_1(t)y_2(t) - x_2(t)y_1(t), \text{ for all } t \in \mathbb{R}.$$
 (39)

Differentiating on both sides of (39), and using the product rule, we obtain

$$W'(t) = x'_1(t)y_2(t) + x_1(t)y'_2(t) - x'_2(t)y_1(t) - x_2(t)y'_1(t), \quad \text{for } t \in \mathbb{R};$$

so that, using (37) and (38),

$$\frac{dW}{dt} = (ax_1 + by_1)y_2 + x_1(cx_2 + dy_2) - (ax_2 + by_2)y_1 - x_2(cx_1 + dy_1);$$

so that,

$$\frac{dW}{dt} = ax_1y_2 + by_1y_2 + cx_1x_2 + dx_1y_2 - ax_2y_1 - by_2y_1 - cx_1x_2 - dx_2y_1,$$

or

$$\frac{dW}{dt} = ax_1y_2 + dx_1y_2 - ax_2y_1 - dx_2y_1$$

$$= a(x_1y_2 - x_2y_1) + d(x_1y_2 - x_2y_1);$$

hence, using (39),

 $\frac{dW}{dt} = (a+d)W,$ $\frac{dW}{dt} = \operatorname{trace}(A)W. \tag{40}$

or

Thus, since $\operatorname{trace}(A) = \lambda_1 + \lambda_2$, (34) follows from (40).

(b) Solve the differential equation in (34) to deduce that $W(t) = e^{(\lambda_1 + \lambda_2)t}$, for all $t \in \mathbb{R}$. Deduce that the columns of $E_A(t)$ are linearly independent solutions of the system in (33).

Solution: It follows from (35), the definition of W and (36) that

 $W(0) = \det(I) = 1.$

Thus, according to the result of part (a), W is the solution of the IVP

$$\begin{cases} \frac{dW}{dt} = (\lambda_1 + \lambda_2)W;\\ W(0) = 1. \end{cases}$$
(41)

The IVP (41) has a unique solution given by $W(t) = e^{(\lambda_1 + \lambda_2)t}$, for all $t \in \mathbb{R}$. It then follows that $W(t) \neq 0$ for all $t \in \mathbb{R}$. Thus, the columns of $E_A(t)$ are linearly independent.

5. Find two distinct solutions of the initial value problem

$$\begin{cases} \dot{x} = 6tx^{2/3}; \\ x(0) = 0. \end{cases}$$
(42)

Why doesn't this violate the uniqueness assertion of the local existence and uniqueness theorem?

Solution: Use separation of variables to show that the function

$$x_1(t) = t^6$$
, for all $t \in \mathbb{R}$,

solves the initial value problem (IVP) in (42).

Verify that the function

$$x_2(t) = 0,$$
 for all $t \in \mathbb{R},$

also solves the IVP in (42).

Thus, the IVP in (42) has at least two distinct solutions.

Observe that the function $f: \mathbb{R}^2 \to \mathbb{R}$ given by

$$f(x,t) = 6tx^{2/3}, \quad \text{for } (x,t) \in \mathbb{R}^2,$$

does not have a continuous partial derivative with respect to x at (0,0). Indeed, for $t \neq 0$ and $x \neq 0$,

$$\frac{\partial f}{\partial x} = \frac{4t}{x^{1/3}}$$

does not have a limit as (x, t) approaches (0, 0). Hence, the local existence and uniqueness theorem discussed in class does not apply to the IVP (42).

6. Consider the initial value problem

$$\begin{cases} \frac{dy}{dt} = y^2 - y;\\ y(0) = 2. \end{cases}$$

$$(43)$$

Give the maximal interval of existence for the solution. Does the solution exist for all t? If not, explain what prevents the solution from being extended further.

Solution: Use separation of variables and partial fractions to derive the solution

$$y(t) = \frac{2}{2 - e^t}, \quad \text{for } t < \ln(2).$$
 (44)

Note that the denominator of the expression in (44) is 0 when $t = \ln(2)$. At that time the solution of the IVP in (43) given in (44) ceases to exist. Hence, the maximal interval of existence for the solution of the IVP in (43) is $(-\infty, \ln(2))$.

Math 102. Rumbos

7. The motion of an object of mass m, attached to a spring of stiffness constant k, and moving along a horizontal flat surface is modeled by the second-order, linear differential equation

$$m\frac{d^2x}{dt^2} + \gamma\frac{dx}{dt} + kx = 0, (45)$$

where x = x(t) denotes the position of the object along its direction of motion, and γ is the coefficient of friction between the object and the surface.

(a) Express the equation in (45) as a system of first order linear differential equations:

$$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = A \begin{pmatrix} x \\ y \end{pmatrix}. \tag{46}$$

Solution: The matrix A in (46) is given by

$$A = \begin{pmatrix} 0 & 1\\ -k/m & -\gamma/m \end{pmatrix}.$$
 (47)

(b) For the matrix A in (46), let $\omega^2 = \frac{k}{m}$ and $b = \frac{\gamma}{2m}$.

Give the characteristic polynomial of the matrix A, and determine when the A has (i) two real and distinct eigenvalues; (ii) only one real eigenvalue; (iii) complex eigenvalues with nonzero imaginary part.

Solution: The matrix A in (47) can now be written as

$$A = \begin{pmatrix} 0 & 1\\ -\omega^2 & -2b \end{pmatrix}.$$
 (48)

The characteristic polynomial of the matrix A in (48) is then

$$p_{A}(\lambda) = \lambda^{2} + 2b\lambda + \omega^{2}.$$

Thus, the eigenvalues of the matrix A in (48) are given by

$$\lambda = -b \pm \sqrt{b^2 - \omega^2}.$$

Thus, A has

- (i) two real and distinct eigenvalues, if $b > \omega$;
- (ii) only one real eigenvalue, if $b = \omega$;

- (iii) complex eigenvalues with nonzero imaginary part, if $b < \omega$.
- (c) Describe the behavior of solutions of (45) in case (iii) of part (b).
 Solution: If b < ω, the eigenvalues of A are complex with negative real part. Hence, the solutions of the equation (45) will oscillate with decreasing amplitude.
- 8. Let Ω denote an open interval of real numbers, and $f: \Omega \to \mathbb{R}$ denote a continuous function. Let $x_p: \Omega \to \mathbb{R}$ denote a particular solution of the nonhomogeneous, second-order equation

$$\frac{d^2x}{dt^2} + b\frac{dx}{dt} + cx = f(t), \quad \text{for } t \in \Omega,$$
(49)

where b and c are real constants.

(a) Let $x: \Omega \to \mathbb{R}$ denote any solution of (49) and put

$$u(t) = x(t) - x_p(t), \quad \text{for } t \in \Omega.$$

Verify that u solves the homogeneous, second-order equation

$$\frac{d^2x}{dt^2} + b\frac{dx}{dt} + cx = 0, \quad \text{for } t \in \Omega.$$
(50)

Solution: Let $x: \Omega \to \mathbb{R}$ be a solution of (49). Then,

$$x''(t) + bx'(t) + cx(t) = f(t), \quad \text{for } t \in \Omega.$$
 (51)

Since we are assuming the $x_p: \Omega \mathbb{R}$ also solves (49), we also have that

$$x_{p}''(t) + bx_{p}'(t) + cx_{p}(t) = f(t), \quad \text{for } t \in \Omega.$$
 (52)

Put

$$u(t) = x(t) - x_p(t), \quad \text{for } t \in \Omega.$$
(53)

Then, by properties of differentiation,

$$u'(t) = x'(t) - x'_p(t), \quad \text{ for } t \in \Omega,$$

and

$$u''(t) = x''(t) - x_p''(t), \quad \text{ for } t \in \Omega.$$

Math 102. Rumbos

Thus, using (51), (52) and (53), we have that

$$u''(t) + bu'(t) + cu(t) = x''(t) - x''_p(t) + b(x'(t) - x'_p(t)) + c(x(t) - x_p(t))$$

$$= x''(t) - x''_p(t) + bx'(t) - bx'_p(t) + cx(t) - cx_p(t)$$

$$= x''(t) + bx'(t) + cx(t) - (x''_p(t) + bx'_p(t) + cx_p(t))$$

$$= f(t) - f(t),$$

for all $t \in \Omega$; so that

$$u''(t) + bu'(t) + cu(t) = 0, \quad \text{for all } t \in \Omega,$$

which shows that u solves the equation in (50).

(b) Let $x_1: \Omega \to \mathbb{R}$ and $x_2: \Omega \to \mathbb{R}$ denote linearly independent solutions of the homogenous equation (50). Prove that any solution of the nonhomogeneous equation in (49) must be of the form

$$x(t) = c_1 x_1(t) + c_2 x_2(t) + x_p(t),$$
 for all $t \in \Omega$,

where c_1 and c_2 are constants.

Solution: Since x_1 and x_2 are linearly independent solutions of (50), any solution of (50) is a linear combination of x_1 and x_2 by the results of problem 4 in Assignment 11. We then have that

$$u(t) = c_1 x_1(t) + c_2 x_2(t), \quad \text{for all } t \in \Omega,$$

for u given in (53) in part (a) of this problem. Consequently,

$$x(t) - x_p(t) = c_1 x_1(t) + c_2 x_2(t),$$
 for all $t \in \Omega$,

from which we get that

$$x(t) = c_1 x_1(t) + c_2 x_2(t) + x_p(t), \text{ for all } t \in \Omega,$$

which was to be shown.

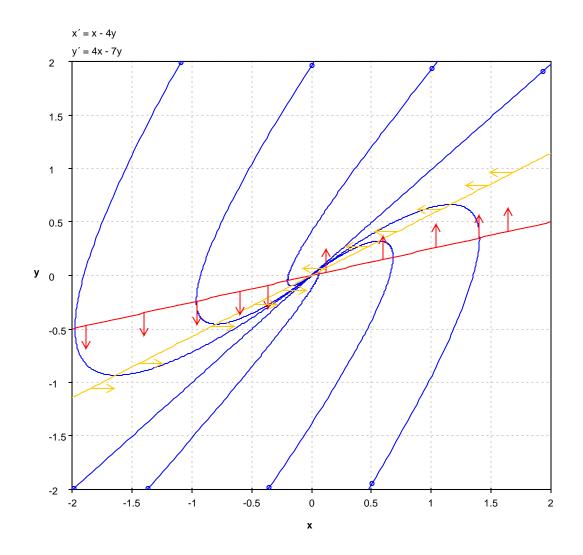


Figure 1: Sketch of Phase Portrait for System (9)

