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Review Problems for Exam 3

1. Find the equilibrium solutions of following autonomous differential equations
and determine the nature of the satiability of the equilibrium solutions. Sketch
some possible solution curves. If possible, describe the long–term behavior of
the solutions.

(a)
dx

dt
= (x− 3)(x− 5)

(b)
dx

dt
= (1− x)(x− 2)2

2. The following equation models the evolution of a population that is being har-
vested at a constant rate:

dN

dt
= 2N − 0.01N2 − 75.

Find equilibrium solutions and sketch a few possible solution curves. According
to model, what will happen if at time t = 0 the initial population densities are
40, 60, 150, or 170.

3. For the following systems, sketch nullclines; find equilibrium points; apply the
principle of Linearized stability (when applicable) to determine the stability
properties of the equilibrium points; describe the local behavior trajectories
near the equilibrium points; and sketch the phase portraits.

(a)

{
ẋ = x2 − y2 − 1;
ẏ = 2y,

(b)

{
ẋ = y − y2 + 2;
ẏ = 2x2 − 2xy,

(c)

{
ẋ = 4− 2y;
ẏ = 12− 3x2.

(d)

{
ẋ = x− x3;
ẏ = −y,
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4. Gradient Systems. Let F be a real–valued, derivatives function defined in
some domain, D, of R2. The system(

ẋ
ẏ

)
= ∇F (x, y)

is called a gradient system.

Let F : R2 → R be given by F (x, y) = x2 − y2, for all (x, y) ∈ R2.

(a) Write down the gradient system associated with the function F .

(b) Find all equilibrium points of the system obtained in part (a) and deter-
mine the nature of their stability.

(c) Sketch the graph of the function F and sketch its level sets.

(d) Sketch the phase portrait of the system obtained in part (a).

5. Negative Gradient Flows. Let f : R2 → R denote a twice differentiable
function with continuous partial derivatives. Consider the negative gradient
system (

ẋ
ẏ

)
= −∇f(x, y). (1)

(a) Let (x(t), y(t)) denote a solution curve of the system in (1) that contains
no equilibrium points of (1). Show that f is strictly decreasing (with
increasing t) along this trajectory.

(b) Let (x(t), y(t)) denote a solution curve of the system in (1) that contains
no equilibrium points of (1). Explain why this trajectory cannot be a cycle.

6. The Linear Pendulum Equation. The pendulum equation (without fric-
tion),

`θ̈ = −g sin(θ), (2)

can be linearized about the equilibrium position θ = 0 to yield the linear equa-
tion

`θ̈ = −gθ. (3)

The equation in (3) is the linearization of the equation in (2) and corresponds
to oscillations of very small amplitude.
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(a) Nondimsionalize the equation in (3) by introducing a dimensionless vari-
able

τ =
t

λ
.

What is the value of the parameter λ in terms of ` and g?

(b) Solve the equation obtained in part (a) by first performing a phase–plane
analysis.

(c) Compute the period, T , of oscillations of solutions of (3) in terms of ` and
g.

7. Modeling the Spread of a Disease. In a simple model for a disease that is
spread through infections transmitted between individuals in a population, the
population is divided into three compartments pictured in Figure 1. In the first

- -S(t) I(t) R(t)
βSI γI

Figure 1: SIR Compartments

compartment, S(t) denotes the number of individuals in a population that are
susceptible to acquiring the disease; in the second compartment, I(t) denotes
the number of infected individual who can also infect others; and, in the third
compartment, R(t) denotes the number of individuals who had the disease and
who have recovered from it; they can no longer get infected.

The arrows between compartments indicate the rates at which individuals flow
from one compartment to the other. For instance, the arrow between the first
two compartments indicates the transmission rate of the disease; it is assumed
that the rate at which susceptible individuals get infected is proportional to
product of number of susceptible individuals and the number of infected in-
dividuals with constant of proportionality β > 0. The rate at which infected
individuals recover is indicated by the arrow between the last two compart-
ments; it is assumed that this rate is proportional to the number of infected
individuals, with constant of proportionality γ > 0.

(a) What are the units for β and γ?
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(b) Use conservation principles to derive a system of differential equations for
the functions S, I and R, assuming that they are differentiable, of the form

dS

dt
= f(S, I, R, β, γ);

dI

dt
= g(S, I, R, β, γ);

dR

dt
= h(S, I, R, β, γ),

(4)

where f , g and h are continuous functions that have continuous partial
derivatives with respect to S, I and R. The system in (4) is known in the
literature as the Kermack–McKendrick SIR model. It first appeared in the
scientific literature in 1927.

(c) Deduce that the system in (4) implies that the total number of individuals
in the population,

N(t) = S(t) + I(t) +R(t),

remains constant. Denote N(t) by N , where N is a constant, for all t.

(d) Explain why the result of part (c) implies that the study of the system (4)
reduces to the study of the two–dimensional system

dS

dt
= f(S, I, R, β, γ);

dI

dt
= g(S, I, R, β, γ).

(5)

(e) Introduce dimensionless variables

x =
S

N
, y =

I

N
, and τ =

t

λ
,

for some scaling factor, λ, in units of time, in order to write the system
(5) in dimensionless form.

(f) Analyze the system obtained in part (e). What does the model in (4)
predict about the spread of the disease in terms of the initial conditions
S(0) = So, I(0) = Io, R(0) = 0, and the parameters β, γ and N? Un-
der which conditions will the number of infected individuals increase (an
epidemic outbreak), or decrease?


