Assignment \#10

Due on Wednesday, March 7, 2018
Read Section 4.2.2 on Existence and Uniqueness in the class lecture notes at http://pages.pomona.edu/~ajr04747/.

Read Section 3.1 on Properties of Linear Systems and the Linearity Principle in Blanchard, Devaney and Hall.
Read Section 3.6 on Second-Order Linear Equations in Blanchard, Devaney and Hall.

Do the following problems

1. In this problem you will prove that the initial-value problem (IVP) for the second order ODE

$$
\left\{\begin{array}{l}
\frac{d^{2} x}{d t^{2}}+b \frac{d x}{d t}+c x=0 \tag{1}\\
x(0)=x_{o} \\
x^{\prime}(0)=y_{o}
\end{array}\right.
$$

where b, c, x_{o} and y_{o} are given real constants, has a unique solution that exists for all $t \in \mathbb{R}$.
(a) Turn the system in (1) into an IVP for a two-dimensional system of firstorder ODEs.
(b) Apply the Existence and Uniqueness Theorem for Linear Systems proved in class and in the lecture notes to show that the IVP in part (a) has a unique solution that exists for all $t \in \mathbb{R}$.
(c) Deduce that the IVP in (1) has a unique solution that exists for all $t \in \mathbb{R}$.
2. Let b and c be given real constants. Suppose that $x_{1}: \mathbb{R} \rightarrow \mathbb{R}$ is a solution of the IVP

$$
\left\{\begin{array}{l}
\frac{d^{2} x}{d t^{2}}+b \frac{d x}{d t}+c x=0 \\
x(0)=1 \\
x^{\prime}(0)=0
\end{array}\right.
$$

and $x_{2}: \mathbb{R} \rightarrow \mathbb{R}$ is a solution of the IVP

$$
\left\{\begin{array}{l}
\frac{d^{2} x}{d t^{2}}+b \frac{d x}{d t}+c x=0 \\
x(0)=0 \\
x^{\prime}(0)=1
\end{array}\right.
$$

Prove that x_{1} and x_{2} are linearly independent.
Suggestion: Begin with the equation

$$
c_{1} x_{1}(t)+c_{2} x_{2}(t)=0, \quad \text { for all } t \in \mathbb{R}
$$

3. Let b and c be given real constants. Let $x_{1}: \mathbb{R} \rightarrow \mathbb{R}$ and $x_{2}: \mathbb{R} \rightarrow \mathbb{R}$ be linearly independent solutions of the second order differential equation

$$
\begin{equation*}
\frac{d^{2} x}{d t^{2}}+b \frac{d x}{d t}+c x=0 . \tag{2}
\end{equation*}
$$

Prove that any solution of (2) must be of the form

$$
x(t)=c_{1} x_{1}(t)+c_{2} x_{2}(t), \quad \text { for all } t \in \mathbb{R}
$$

4. Let b and c be given real constants. Suppose that λ_{1} and λ_{2} be distinct real solutions of the equation

$$
\lambda^{2}+b \lambda+c=0
$$

Prove that the general solution of the equation

$$
\frac{d^{2} x}{d t^{2}}+b \frac{d x}{d t}+c x=0
$$

is given by

$$
x(t)=c_{1} e^{\lambda_{1} t}+c_{2} e^{\lambda_{2} t}, \quad \text { for all } t \in \mathbb{R}
$$

and arbitrary constants c_{1} and c_{2}.
5. Find the solution of the initial value problem for the following second order differential equation:

$$
\left\{\begin{array}{l}
x^{\prime \prime}-x=e^{t} \\
x(0)=1 \\
x^{\prime}(0)=0
\end{array}\right.
$$

