Assignment \#15

Due on Wednesday, April 18, 2018
Read Section 6.3 on Analysis of a Lotka-Volterra System in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Read Section 5.3 on Hamiltonian Systems in Blanchard, Devaney and Hall.
Do the following problems

1. Consider the system

$$
\left\{\begin{array}{l}
\dot{x}=y ; \tag{1}\\
\dot{y}=x^{3}-x .
\end{array}\right.
$$

(a) Verify that the function $H: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by

$$
\begin{equation*}
H(x, y)=\frac{y^{2}}{2}+\frac{x^{2}}{2}-\frac{x^{4}}{4}, \quad \text { for all }(x, y) \in \mathbb{R}^{2} \tag{2}
\end{equation*}
$$

is a conserved quantity of the system in (1).
(b) Sketch the level sets of the function H given in (2).
(c) Sketch the phase portrait of the system in (1). Determine the nature of the stability of the equilibrium points.
2. For the system

$$
\left\{\begin{array}{l}
\dot{x}=y \tag{3}\\
\dot{y}=x-x^{2}
\end{array}\right.
$$

(a) find a conserved quantity, H;
(b) sketch the level sets of the function H found in part (a);
(c) sketch the phase portrait of the system in (3), and determine the nature of the stability of the equilibrium points.
3. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ be continuous functions with antiderivatives F and G, respectively.
Five a conserved quantity for the system

$$
\left\{\begin{array}{l}
\dot{x}=f(y) ; \\
\dot{y}=g(x),
\end{array}\right.
$$

in terms of the functions F and G.
4. For the Lotka-Volterra system

$$
\left\{\begin{array}{l}
\dot{x}=x(1-y) \\
\dot{y}=y(x-1)
\end{array}\right.
$$

let $(x(t), y(t))$ be a parametrization of a closed orbit in the first quadrant with period T. Verify that

$$
\frac{1}{T} \int_{0}^{T} x(t) d t=\frac{1}{T} \int_{0}^{T} y(t) d t=1
$$

Generalize this result for the case of the system

$$
\left\{\begin{array}{l}
\dot{x}=\alpha x-\beta x y ; \tag{4}\\
\dot{y}=\delta x y-\gamma y,
\end{array}\right.
$$

where α, β, γ and δ are positive parameters.
5. Let α, β, γ and δ be the positive parameters in system (4) in Problem 4, and denote by Q_{1}^{+}the set

$$
Q_{1}^{+}=\left\{(x, y) \in \mathbb{R}^{2} \mid x>0 \text { and } y>0\right\}
$$

Define $H: Q_{1}^{+} \rightarrow \mathbb{R}$ to be

$$
\begin{equation*}
H(x, y)=\delta x-\gamma \ln (x)+\beta y-\alpha \ln (y), \quad \text { for }(x, y) \in Q_{1}^{+} . \tag{5}
\end{equation*}
$$

(a) Verify the function H given (5) is a conserved quantity for the system (4) in Problem 4.
(b) Show that H in (5) has a unique critical point in Q_{1}^{+}and show that it H attains its minimum in Q_{1}^{+}at that point.
(c) Sketch the level sets of the function H given in (5).
(d) Sketch the phase portrait of the system in (4). Determine the nature of the stability of the equilibrium points.

