Assignment \#4

Due on Monday, February 5, 2018
Read Section 4.1.2 on Diagonalizable Systems in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Read Section 3.2, on Straight-Line Solutions, in Blanchard, Devaney and Hall.
Do the following problems

1. Explain why the following linear system of differential equations cannot be put in diagonal form.

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=2 x+y \\
\frac{d y}{d t}=-x+4 y
\end{array}\right.
$$

2. Explain why the following linear system of differential equations cannot be put in diagonal form.

$$
\left\{\begin{aligned}
\frac{d x}{d t} & =a y \\
\frac{d y}{d t} & =-b x
\end{aligned}\right.
$$

where a and b are positive constants
3. Explain why the following linear system of differential equations cannot be put in diagonal form.

$$
\left\{\begin{aligned}
\frac{d x}{d t} & =-2 x-3 y \\
\frac{d y}{d t} & =3 x-2 y
\end{aligned}\right.
$$

4. Determine whether or not the linear system

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=y \\
\frac{d y}{d t}=8 x-2 y
\end{array}\right.
$$

can be put in diagonal form. If so, give the general solution to the system and sketch the phase portrait.
5. Determine whether or not the linear system

$$
\left\{\begin{aligned}
\frac{d x}{d t} & =-3 x+2 y \\
\frac{d y}{d t} & =4 x-5 y
\end{aligned}\right.
$$

can be put in diagonal form. If so, give the general solution to the system and sketch the phase portrait.

