Assignment \#6

Due on Friday, February 23, 2018
Read Section 4.1.5 on Non-Diagonalizable Systems with No Real Eigenvalues in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Read Section 3.4 on Complex Eigenvalues in Blanchard, Devaney and Hall.

Background and Definitions.

Some Facts from the Arithmetic of Complex Numbers.
The object $z=a+b i$, where a and b are real numbers, denotes a complex number; we write $z \in \mathbb{C}$. The complex number i has the property that $i^{2}=-1$.

- Real Part of a Complex Number. The real part of $z=a+b i$, denoted by $\operatorname{Re}(z)$, is defined by

$$
\operatorname{Re}(z)=a .
$$

- Imaginary Part of a Complex Number. The imaginary part of $z=a+b i$, denoted by $\operatorname{Im}(z)$, is defined by

$$
\operatorname{Im}(z)=b
$$

- Conjugate of a Complex Number. The conjugate of $z=a+b i$, denoted by \bar{z}, is defined by

$$
\bar{z}=a-b i .
$$

Important Observations:

$z \in \mathbb{C}$ is a real number if and only if $\bar{z}=z$.
$\operatorname{Re}(z)=\frac{z+\bar{z}}{2}$ and $\operatorname{Im}(z)=\frac{z-\bar{z}}{2 i}$.
For any complex numbers z and $w, \overline{z w}=\bar{z} \bar{w}$.

- Modulus of a Complex Number. The modulus of $z=a+b i$, denoted by $|z|$, is defined by

$$
|z|=\sqrt{a^{2}+b^{2}} .
$$

Note that $z \bar{z}=|z|^{2}$.

- Argument of a Complex Number. The argument of $z=a+b i$, denoted by $\arg (z)$, is defined by

$$
\arg (z)=\arctan \left(\frac{b}{a}\right) .
$$

Do the following problems

1. Let A denote a 2×2 matrix with real entries. Assume that $\lambda \in \mathbb{C}$ is a complex eigenvalue of A with (complex) eigenvector w; that is, $w=\binom{z_{1}}{z_{2}}$, where $z_{1}, z_{2} \in \mathbb{C}$. Show that $\bar{\lambda}$ is also an eigenvalue of A with corresponding eigenvector $\bar{w}=\left(\frac{\overline{z_{1}}}{z_{2}}\right)$.
2. Let A denote a 2×2 matrix with real entries. Assume that $\lambda=\alpha+i \beta$ is a complex eigenvalue of A, where $\beta \neq 0$. Show that the characteristic polynomial of A is given by $p_{A}(\lambda)=\lambda^{2}-2 \alpha \lambda+\alpha^{2}+\beta^{2}$.
3. Let A denote a 2×2 matrix with real entries with eigenvalues $\lambda_{1}=\alpha+i \beta$ and $\lambda_{2}=\alpha-i \beta$, with $\beta \neq 0$. Let $w_{1} \in \mathbb{C}^{2}$ be an eigenvector corresponding to λ_{1}.
(a) Show that $w_{2}=\overline{w_{1}}$ is an eigenvector corresponding to λ_{2}.
(b) Define vectors $v_{1}, v_{2} \in \mathbb{R}^{2}$ by

$$
v_{1}=\operatorname{Im}\left(w_{1}\right)=\frac{1}{2 i}\left(w_{1}-w_{2}\right) \quad \text { and } v_{2}=\operatorname{Re}\left(w_{1}\right)=\frac{1}{2}\left(w_{1}+w_{2}\right) .
$$

Show that the set $\left\{v_{1}, v_{2}\right\}$ is linearly independent.
(c) Verify that

$$
\begin{align*}
& A v_{1}=\alpha v_{1}+\beta v_{2} \tag{1}\\
& A v_{2}= \\
& =\beta v_{1}+\alpha v_{2}
\end{align*}
$$

4. Let $A, \lambda_{1}=\alpha+i \beta, v_{1}$ and v_{2} be as in Problem 3.
(a) Use the result in (1) to deduce that the matrix representation of the linear transformation induced by A relative to the basis $\mathcal{B}=\left\{v_{1}, v_{2}\right\}$ is

$$
[A]_{\mathcal{B}}^{\mathcal{B}}=\left(\begin{array}{rr}
\alpha & -\beta \\
\beta & \alpha
\end{array}\right)
$$

(b) Give an invertible matrix Q such that $Q^{-1} A Q=\left(\begin{array}{rr}\alpha & -\beta \\ \beta & \alpha\end{array}\right)$.
5. Construct solutions of the system

$$
\left\{\begin{array}{l}
\dot{x}=a y \\
\dot{y}=-b x
\end{array}\right.
$$

where a and b are positive constants, and sketch the phase portrait.

