Assignment \#7

Due on Wednesday, February 28, 2018
Read Section 4.2 on Analysis of Linear Systems in the class lecture notes at http://pages.pomona.edu/~ajr04747/.

Read Section 3.1 on Properties of Linear Systems and the Linearity Principle in Blanchard, Devaney and Hall.

Background and Definitions.

Linearly Independent Functions. Let $\binom{x_{1}(t)}{y_{1}(t)}$ and $\binom{x_{2}(t)}{y_{2}(t)}$, for $t \in \Omega$, where Ω denotes an open interval of real numbers, define vector valued functions over Ω. We say that $\binom{x_{1}}{y_{1}}$ and $\binom{x_{2}}{y_{2}}$ are linearly independent if

$$
\operatorname{det}\left(\begin{array}{ll}
x_{1}\left(t_{o}\right) & x_{2}\left(t_{o}\right) \tag{1}\\
y_{1}\left(t_{o}\right) & y_{2}\left(t_{o}\right)
\end{array}\right) \neq 0, \quad \text { for some } t_{o} \in \Omega
$$

The Wronskian. The determinant on the left-hand side of (1) is called the Wronskian of the functions $\binom{x_{1}}{y_{1}}$ and $\binom{x_{2}}{y_{2}}$, and we will denote it by $W(t)$.
Do the following problems

1. Let v_{1} and v_{2} be vectors in \mathbb{R}^{2} that are linearly independent. Define

$$
\binom{x_{1}(t)}{y_{1}(t)}=e^{\lambda_{1} t} \mathbf{v}_{1} \quad \text { and } \quad\binom{x_{2}(t)}{y_{2}(t)}=e^{\lambda_{2} t} \mathbf{v}_{2}, \quad \text { for } t \in \mathbb{R}
$$

where λ_{1} and λ_{2} are real numbers. Show that $\binom{x_{1}}{y_{1}}$ and $\binom{x_{2}}{y_{2}}$ are linearly independent.
2. Define

$$
\binom{x_{1}(t)}{y_{1}(t)}=\binom{\cos (\beta t)}{\sin (\beta t)} \quad \text { and } \quad\binom{x_{2}(t)}{y_{2}(t)}=\binom{-\sin (\beta t)}{\cos (\beta t)}, \quad \text { for } t \in \mathbb{R}
$$

where β is a nonzero real number. Show that $\binom{x_{1}}{y_{1}}$ and $\binom{x_{2}}{y_{2}}$ are linearly independent.
3. Define

$$
\binom{x_{1}(t)}{y_{1}(t)}=\binom{e^{\lambda t}}{0} \quad \text { and } \quad\binom{x_{2}(t)}{y_{2}(t)}=\binom{t e^{\lambda t}}{e^{\lambda t}}, \quad \text { for } t \in \mathbb{R}
$$

where λ is a real number. Show that $\binom{x_{1}}{y_{1}}$ and $\binom{x_{2}}{y_{2}}$ are linearly independent.
4. Consider the general linear system

$$
\begin{equation*}
\binom{\dot{x}}{\dot{y}}=A(t)\binom{x}{y}, \quad \text { for } t \in \Omega \tag{2}
\end{equation*}
$$

where

$$
A(t)=\left(\begin{array}{ll}
a(t) & b(t) \tag{3}\\
c(t) & d(t)
\end{array}\right), \quad \text { for } t \in \Omega
$$

and a, b, c and d are continuous functions defined in some open interval Ω.
Let $\binom{x_{1}}{y_{1}}$ and $\binom{x_{2}}{y_{2}}$ be two solutions of (2) and let $W(t)$ denote their Wronskian.
Verify that

$$
\frac{d W}{d t}=p(t) W, \quad \text { for } t \in \Omega
$$

where $p(t)=\operatorname{trace}(A(t))$, for all $t \in \Omega$; that is, $p(t)$ is the trace of the matrix $A(t)$ in (3).
5. (Problem 4 Continued). Let $\binom{x_{1}}{y_{1}}$ and $\binom{x_{2}}{y_{2}}$ be two solutions of (2) and let $W(t)$ denote their Wronskian.
Show that, if $W\left(t_{o}\right) \neq 0$ for some $t_{o} \in \Omega$, then $W(t) \neq 0$ for all $t \in \Omega$.

