Assignment #7

Due on Wednesday, February 28, 2018

Read Section 4.2 on *Analysis of Linear Systems* in the class lecture notes at http://pages.pomona.edu/~ajr04747/.

Read Section 3.1 on *Properties of Linear Systems and the Linearity Principle* in Blanchard, Devaney and Hall.

Background and Definitions.

Linearly Independent Functions. Let $\begin{pmatrix} x_1(t) \\ y_1(t) \end{pmatrix}$ and $\begin{pmatrix} x_2(t) \\ y_2(t) \end{pmatrix}$, for $t \in \Omega$, where Ω denotes an open interval of real numbers, define vector valued functions over Ω . We say that $\begin{pmatrix} x_1 \\ y_1 \end{pmatrix}$ and $\begin{pmatrix} x_2 \\ y_2 \end{pmatrix}$ are linearly independent if $\det \begin{pmatrix} x_1(t_o) & x_2(t_o) \\ y_1(t_o) & y_2(t_o) \end{pmatrix} \neq 0$, for some $t_o \in \Omega$. (1)

The Wronskian. The determinant on the left-hand side of (1) is called the Wronskian of the functions $\begin{pmatrix} x_1 \\ y_1 \end{pmatrix}$ and $\begin{pmatrix} x_2 \\ y_2 \end{pmatrix}$, and we will denote it by W(t).

Do the following problems

1. Let v_1 and v_2 be vectors in \mathbb{R}^2 that are linearly independent. Define

$$\begin{pmatrix} x_1(t) \\ y_1(t) \end{pmatrix} = e^{\lambda_1 t} \mathbf{v}_1 \quad \text{and} \quad \begin{pmatrix} x_2(t) \\ y_2(t) \end{pmatrix} = e^{\lambda_2 t} \mathbf{v}_2, \quad \text{for } t \in \mathbb{R},$$

where λ_1 and λ_2 are real numbers. Show that $\begin{pmatrix} x_1 \\ y_1 \end{pmatrix}$ and $\begin{pmatrix} x_2 \\ y_2 \end{pmatrix}$ are linearly independent.

2. Define

$$\begin{pmatrix} x_1(t) \\ y_1(t) \end{pmatrix} = \begin{pmatrix} \cos(\beta t) \\ \sin(\beta t) \end{pmatrix} \text{ and } \begin{pmatrix} x_2(t) \\ y_2(t) \end{pmatrix} = \begin{pmatrix} -\sin(\beta t) \\ \cos(\beta t) \end{pmatrix}, \text{ for } t \in \mathbb{R},$$

where β is a nonzero real number. Show that $\begin{pmatrix} x_1 \\ y_1 \end{pmatrix}$ and $\begin{pmatrix} x_2 \\ y_2 \end{pmatrix}$ are linearly independent.

3. Define

$$\begin{pmatrix} x_1(t) \\ y_1(t) \end{pmatrix} = \begin{pmatrix} e^{\lambda t} \\ 0 \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} x_2(t) \\ y_2(t) \end{pmatrix} = \begin{pmatrix} te^{\lambda t} \\ e^{\lambda t} \end{pmatrix}, \quad \text{for } t \in \mathbb{R},$$

where λ is a real number. Show that $\begin{pmatrix} x_1 \\ y_1 \end{pmatrix}$ and $\begin{pmatrix} x_2 \\ y_2 \end{pmatrix}$ are linearly independent.

4. Consider the general linear system

$$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = A(t) \begin{pmatrix} x \\ y \end{pmatrix}, \quad \text{for } t \in \Omega,$$
(2)

where

$$A(t) = \begin{pmatrix} a(t) & b(t) \\ c(t) & d(t) \end{pmatrix}, \quad \text{for } t \in \Omega,$$
(3)

and a, b, c and d are continuous functions defined in some open interval Ω . Let $\begin{pmatrix} x_1 \\ y_1 \end{pmatrix}$ and $\begin{pmatrix} x_2 \\ y_2 \end{pmatrix}$ be two solutions of (2) and let W(t) denote their Wronskian.

Verify that

$$\frac{dW}{dt} = p(t)W, \quad \text{ for } t \in \Omega,$$

where p(t) = trace(A(t)), for all $t \in \Omega$; that is, p(t) is the trace of the matrix A(t) in (3).

5. (Problem 4 Continued). Let $\begin{pmatrix} x_1 \\ y_1 \end{pmatrix}$ and $\begin{pmatrix} x_2 \\ y_2 \end{pmatrix}$ be two solutions of (2) and let W(t) denote their Wronskian.

Show that, if $W(t_o) \neq 0$ for some $t_o \in \Omega$, then $W(t) \neq 0$ for all $t \in \Omega$.