Assignment \#8

Due on Friday, March 2, 2018
Read Section 4.2.1 on Fundamental Matrices in the class lecture notes at http://pages.pomona.edu/~ajr04747/.

Read Section 3.1 on Properties of Linear Systems and the Linearity Principle in Blanchard, Devaney and Hall.

Do the following problems

1. Construct a fundamental matrix for the system $\begin{cases}\dot{x} & =2 y ; \\ \dot{y} & =x+y .\end{cases}$
2. Construct a fundamental matrix for the system $\begin{cases}\dot{x}=x+3 y ; \\ \dot{y}=2 x+6 y\end{cases}$
3. Construct a fundamental matrix for the system $\left\{\begin{array}{lll}\dot{x} & =2 x+y ; \\ \dot{y} & =-x+4 y .\end{array}\right.$
4. Let E_{A} denote the fundamental matrix of the two-dimensional linear system

$$
\binom{\dot{x}}{\dot{y}}=A\binom{x}{y},
$$

where A is a 2×2 matrix with real entries.
Show that E_{A} is invertible and

$$
\left[E_{A}(t)\right]^{-1}=E_{A}(-t), \quad \text { for all } t \in \mathbb{R}
$$

5. Let A and E_{A} be as in Problem 4. Show that

$$
E_{A}(t+\tau)=E_{A}(t) E_{A}(\tau), \quad \text { for all } t, \tau \in \mathbb{R}
$$

