Assignment \#9

Due on Monday, March 5, 2017

Read Section 4.2.1 on Fundamental Matrices in the class lecture notes at http://pages.pomona.edu/~ajr04747/.

Read Section 4.2.2 on Existence and Uniqueness in the class lecture notes at http://pages.pomona.edu/~ajr04747/.

Do the following problems

1. Let $J=\left(\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right)$. Verify that the corresponding fundamental matrix, E_{J}, commutes with J.
2. Let $J=\left(\begin{array}{ll}\lambda & 1 \\ 0 & \lambda\end{array}\right)$. Verify that the corresponding fundamental matrix, E_{J}, commutes with J.
3. Let $J=\left(\begin{array}{rr}\alpha & -\beta \\ \beta & \alpha\end{array}\right)$. Verify that the corresponding fundamental matrix, E_{J}, commutes with J.
4. Let A denote a 2×2 matrix with real coefficients, and let E_{A} denote the fundamental matrix fore the system

$$
\binom{\dot{x}}{\dot{y}}=A\binom{x}{y} .
$$

Show that A and E_{A} commute.
5. Let E_{A} denote the fundamental matrix of the system

$$
\binom{\dot{x}_{1}}{\dot{x}_{2}}=A\binom{x_{1}}{x_{2}},
$$

and put $Y(t)=\left[E_{A}(t)\right]^{-1}$, for all $t \in \mathbb{R}$. Show that Y is the fundamental matrix of the system

$$
\binom{\dot{y}_{1}}{\dot{y}_{2}}=-A\binom{y_{1}}{y_{2}} .
$$

