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Solutions to Review Problems for Exam 1

1. Two–Compartment Pharmacokinetic Modeling. The flow diagram in
Figure 1 depicts the flow of a drug in the amount x(t) in the blood of a patient
and in the amount y(t) in the tissues. Drug is administered to the patient
intravenously at a rate R(t). The medication is then transferred from the blood
compartment to the tissues compartment at a rate proportional to the amount
of drug in the blood; it is also transferred back from the tissues compartment to
the blood compartment also at a rate proportional to the amount of medication
in the tissues (see the arrows in the diagram and the corresponding constants of
proportionality). Medication can also leave the compartments through flushing
out of the blood compartment or by chemical breakdown in the blood and
tissues.
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Figure 1: Two–Compartment Flow Diagram

(a) Apply conservation principles to derive a mathematical model that de-
scribes the evolution of the quantities x and y in time.

Solution: Apply the conservation principle to the x–compartment,

dx

dt
= Rate of x in − Rate of x out,

where
Rate of x in = R(t) + k2y

and
Rate of x out = k1x+ βx;
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so that,
dx

dt
= R(t) + k2y − (k1x+ βx),

or
dx

dt
= R(t)− (k1 + β)x+ k2y. (1)

Next, apply the conservation principle

dy

dt
= Rate of y in − Rate of y out

to the y–compartment, where

Rate of y in = k1x

and
Rate of y out = k2y + γy;

so that,
dy

dt
= k1x− (k2y + γy),

or
dy

dt
= k1x− (k2 + γ)y. (2)

Combining the equations in (1) and (2) we obtain the system{
ẋ = R(t)− (k1 + β)x+ k2y;

ẏ = k1x− (k2 + γ)y.
(3)

�

(b) Write the system obtained in part (b) above in vector form. Is the system
linear? (Explain your reasoning). Is the system autonomous? (Explain
your reasoning).

Solution: Writing the system in (3) in vector form we get(
ẋ
ẏ

)
=

(
R(t)− (k1 + β)x+ k2y

k1x− (k2 + γ)y

)
,

or (
ẋ
ẏ

)
=

(
−(k1 + β)x+ k2y
k1x− (k2 + γ)y

)
+

(
R(t)

0

)
,

or (
ẋ
ẏ

)
=

(
−(k1 + β) k2

k1 −(k2 + γ)

)(
x
y

)
+

(
R(t)

0

)
,
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or (
ẋ
ẏ

)
= A

(
x
y

)
+

(
R(t)

0

)
,

where

A =

(
−(k1 + β) k2

k1 −(k2 + γ)

)
is a 2× 2 matrix whose coefficients at independent of x and y. Hence, the
system in (3) is a linear system.

If R(t) is constant, then the system in (3) is autonomous; otherwise, the
system is non–autonomous. �

2. AOne–Compartment Dilution Model. When people smoke, carbon monox-
ide is released into the air. Suppose that in a room of volume 60 m3, air con-
taining 5% carbon monoxide is introduced at a rate of 0.002 m3/min. (This
means that 5% of the volume of incoming air is carbon monoxide). Assume
that the carbon monoxide mixes immediately with the air and that the mixture
leaves the room at the same rate as it enters.

(a) Let Q = Q(t) denote the volume (in cubic meters) of carbon monoxide in
the room at any time t in minutes. Use a conservation principle to write
down a differential equation for Q.

Solution: The diagram in Figure 2 depicts the room as a compartment
of fixed volume V = 60 cubic meters. Air flows into the compartment at

-

-

Q(t)

F

F

co

V

Figure 2: One–Compartment Model

a rate F = 0.002m3/min and goes out of the chamber at the same rate
F . The incoming air contains carbon monoxide (CO) at a concentration
co = 5% in units of percent volume.
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Since we are assuming that the incoming CO mixes immediately with the
air in the room, the concentration of CO in the room at time t is given by

c(t) =
Q(t)

V
, for all t > 0. (4)

Applying a conservation principle to the volume of CO in the room, Q(t),
at any time t, we have that

dQ

dt
= Rate of Q in − Rate of Q out,

where
Rate of Q in = Fco

and
Rate of Q out = Fc(t);

so that,
dQ

dt
= Fco − F

Q(t)

V
,

where we have used (4), or

dQ

dt
= Fco −

F

V
Q. (5)

�

(b) Based on your answer to part (a), give a differential equation satisfied
by the concentration, c(t), of carbon monoxide in the room (in percent
volume) at any time t in minutes.

Solution: Divide the differential equation in (5) by V and use (4), where
V is constant to obtain,

dc

dt
=
F

V
co −

F

V
c. (6)

�

(c) Construct solutions of the differential equation that you derived in part
(b). Based on your answer, what is the limiting value of c(t) as t→∞?

Solution: We can solve the differential equation in (6) using an integrat-
ing factor.

Rewrite the equation in (6) as

dc

dt
+
F

V
c =

F

V
co,
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and multiply by the integrating factor

µ(t) = e
F
V
t (7)

to get

µ(t)
dc

dt
+
F

V
µ(t)c =

F

V
coe

F
V
t,

or
d

dt
[µ(t)c] =

F

V
coe

F
V
t. (8)

Integrate on both sides of (8) with respect to t to get

µ(t)c(t) = coe
F
V
t + k, (9)

where k is a constant of integration.

Divide on both sides of the the equation in (9) by µ(t) given in (7) to get

c(t) = co + ke−
F
V
t, for all t > 0. (10)

Letting t→∞ in (10) we obtain that

lim
t→∞

c(t) = co,

since F and V are positive constants. �

(d) Medical texts warn that exposure to air containing 0.1% carbon monoxide
for some time can lead to a coma. How many hours does it take for the
concentration of carbon monoxide found in part (c) to reach this level?
Assume that there is no carbon monoxide in the room at time t = 0.

Solution: Assuming that there is no CO in the room at time t = 0, we
get from (4) that c(0) = 0; thus, using (10) we obtain that co+k = 0, from
which we get that k = −co. Hence, substituting this value for k into (10),

c(t) = co

(
1− e−

F
V
t
)
, for all t > 0. (11)

We are asked to find a time t such that c(t) = 0.1%, or according to (11),

0.05
(

1− e−
F
V
t
)

= 0.001,

or, after multiplying on both sides by 1, 000,

50
(

1− e−
F
V
t
)

= 1. (12)
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Solving the equation in (12) for t yields

t =
V

F
ln

(
50

49

)
. (13)

Next, substitute the values F = 0.002 m3/min and V = 60 m3 in (13) to
obtain,

t = 30, 000 ln

(
50

49

)
min,

or about 606 minutes, or about 10 hours. �

3. A One–Compartment Pharmacokinetic Model. A patient is given the
drug theophylline intravenously at a constant rate of 43.2 mg/hour to relieve
acute asthma. You can imagine the drug as entering a compartment of volume
35, 000 ml. (This is an estimate of the volume of the part of the body through
which the drug circulates.) The rate at which the drug leaves the patient is
proportional to the quantity there, with proportionality constant 0.082.

(a) Use a conservation principle to derive a differential equation for the quan-
tity, Q = Q(t), in milligrams, of the drug in the body at time t hours.

Solution: The diagram in Figure 3 shows the compartment with theo-
phylline entering the compartment at a rate r = 43.2 mg/hour and leaving
the compartment at a rate kQ, with k = 0.082 hour−1.

-

-

Q(t)

r

kQ

Figure 3: One–Compartment Model

Applying a conservation principle to the amount of theophylline, Q(t), in
miligrams, at any time t, we have that

dQ

dt
= Rate of Q in − Rate of Q out,
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where
Rate of Q in = r

and
Rate of Q out = kQ;

so that,
dQ

dt
= r − kQ. (14)

�

(b) Construct solutions to the differential equation derived in part (a).

Solution: We can solve the differential equation in (14) using an inte-
grating factor.

Rewrite the equation in (14) as

dQ

dt
+ kQ = r,

and multiply by the integrating factor

µ(t) = ekt

to get

ekt
dQ

dt
+ kektQ = rekt,

or
d

dt

[
ektQ

]
= rekt. (15)

Integrate on both sides of (15) with respect to t to get

ektQ(t) =
r

k
ekt + C, (16)

where C is a constant of integration.

Divide on both sides of the equation in (16) by ekt to obtain

Q(t) =
r

k
+ Ce−kt, for all t. (17)

�

(c) Based on your answer in part (b), what is the limiting value of Q(t) as
t→∞?
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Solution: Let t→∞ in (17) to obtain that

lim
t→∞

Q(t) =
r

k
, (18)

since k is a positive constant. Using the values r = 43.2 mg/hour and
k = 0.082 hour−1, in (18) we obtain that

lim
t→∞

Q(t) =
43.2

0.082
mg,

or about 527 milligrams. �

4. Construct solutions of the linear, first order differential equation

dy

dt
= 2ty + t. (19)

Solution: We can solve the differential equation in (19) using an integrating
factor.

Rewrite the equation in (14) as

dy

dt
− 2ty = t,

and multiply by the integrating factor

µ(t) = e−t
2

to get

e−t
2 dy

dt
− 2te−t

2

y = te−t
2

,

or
d

dt

[
e−t

2

y
]

= te−t
2

. (20)

Integrate on both sides of (20) with respect to t to get

e−t
2

y(t) = −1

2
e−t

2

+ C, (21)

where C is a constant of integration.

Divide on both sides of the equation in (21) by e−t
2

to obtain

y(t) = −1

2
+ Cet

2

, for all t.

�
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5. For the following linear system, give the equations for the solution curves and
sketch the phase portrait. {

ẋ = −3x+ y;
ẏ = −x− 3y.

(22)

What happens to the solutions as t→∞?

Solution: Note that the system in (22) is of the form{
ẋ = αx− βy;
ẏ = βx+ αy,

(23)

where α = −3 and β = −1. The general solution of the system in (23) is(
x(t)
y(t)

)
= Reαt

(
cos(βt+ φ)
sin(βt+ φ)

)
, for all t ∈ R,

and for constants R > 0 and φ ∈ R. Thus, the general solution of the system
in (22) is (

x(t)
y(t)

)
= Re−3t

(
cos(−t+ φ)
sin(−t+ φ)

)
, for all t ∈ R, (24)

or (
x(t)
y(t)

)
= Re−3t

(
cos(t− φ)
− sin(t− φ)

)
, for all t ∈ R.

According to (24), the trajectories of the system in (22) spiral in towards the
origin in the clockwise sense. Some of these trajectories are sketched in Figure
4 on page 16. The sketch in Figure 4, obtained using pplane for java, also shows
the nullclines of the system in (22). �

6. For the following linear system, give the equations for the solution curves and
sketch the phase portrait. {

ẋ = 2y;
ẏ = x+ y.

(25)

Construct a solution of the system subject to the initial condition: x(0) = 1,
y(0) = 1.

Solution: Write the system in (25) in vector form to get(
ẋ
ẏ

)
= A

(
x
y

)
,
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where A is the 2× 2 matrix

A =

(
0 2
1 1

)
. (26)

Next, we see whether or not the matrix A in (26) is diagonalizable.

The characteristic polynomial of A is

p
A

(λ) = λ2 − λ− 2,

which factors into
p
A

(λ) = (λ+ 1)(λ− 2).

Thus, the matrix A has distinct real eigenvalues

λ1 = −1 and λ2 = 2.

Thus, A is diagonalizable with a basis of eigenvectors

v1 =

(
2
−1

)
and v2 =

(
1
1

)
, (27)

corresponding to λ1 and λ2, respectively.

Hence, the general solution of the system in (25) is given by(
x(t)
y(t)

)
= c1e

−tv1 + c2e
2tv2, (28)

where the vectors v1 and v2 are given in (27), and c1 and c2 are arbitrary
constants.

A sketch of a few of the trajectories (28) is given in Figure 5 on page 17. The
sketch also shows that direction field of the system and the particular solution(

x(t)
y(t)

)
= e2tv2, (29)

that goes through the point

(
x(0)
y(0)

)
= v2 =

(
1
1

)
. This is a line solution in the

direction of the vector v2. �
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7. Construct solutions of the second order differential equation

d2x

dt2
+ x = 0. (30)

Give a solution of (30) subject to the initial conditions x(0) = 1, x′(0) = 0.

Solution: We turn the second–order differential equation into (30) into a two–
dimensional system of first order equations by introducing a variable

y =
dx

dt
. (31)

We then obtain from (31) that
ẋ = y. (32)

We also obtain from (31) that

ẏ =
d2x

dt2
;

so that, using (30),
ẏ = −x. (33)

Combining (32) and (33) we obtain the system of differential equations{
ẋ = y;
ẏ = −x. (34)

The system in (34) is of the form{
ẋ = αx− βy;
ẏ = βx+ αy,

(35)

where α = 0 and β = −1. Thus, the general solution of the system in (34) is(
x(t)
y(t)

)
= R

(
cos(−t+ φ)
sin(−t+ φ)

)
, for all t ∈ R,

for constants R > 0 and φ ∈ R, or(
x(t)
y(t)

)
=

(
R cos(t− φ)
−R sin(t− φ)

)
, for all t ∈ R. (36)

Picking our the first component of the vector in (36) yields

x(t) = R cos(t− φ), for all t ∈ R. (37)
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This is the general solution of the second–order differential equation in (30).

To find a particular solution of (30) satisfying the initial conditions x(0) = 1,
x′(0) = 0, use (37) to compute

x′(t) = −R sin(t− φ), for all t ∈ R. (38)

We then obtain from (37), (38) and the initial conditions, that{
R cos(−φ) = 1;
−R sin(−φ) = 0,

or {
R cos(φ) = 1;
R sin(φ) = 0.

(39)

Solving the system in (39) simultaneously yields R = 1 and φ = 0. We then get
from (37) that

x(t) = cos(t), for all t ∈ R.

�

8. Construct solutions of the linear system{
ẋ = x− 4y;
ẏ = 4x− 7y.

(40)

Use nullclines to sketch the phase portrait.

Solution: Write the system in (40) in vector form to get(
ẋ
ẏ

)
= A

(
x
y

)
,

where A is the 2× 2 matrix

A =

(
1 −4
4 −7

)
. (41)

Next, we see whether or not the matrix A in (41) is diagonalizable.

The characteristic polynomial of A is

p
A

(λ) = λ2 + 6λ+ 9,
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which factors into
p
A

(λ) = (λ+ 3)2.

Thus, the matrix A has only one real eigenvalues

λ = −3. (42)

The eigenspace corresponding to the eigenvalue λ given in (42) is one dimen-
sional; hence, A is not diagonalizable. We can, however, turn A into the Jordan
canonical form

J =

(
λ 1
0 λ

)
by a change of basis given by {v1, v2}, where

v1 =

(
1
1

)
(43)

is an eigenvector corresponding to the eigenvalue λ = −3 in (42), and v2 is a
solution of linear system

(A− λI)v = v1. (44)

Solving the system in (44) we obtain a solution

v2 =

(
1/4
0

)
. (45)

We then obtain the general solution for the system in (40):(
x(t)
y(t)

)
= (c1e

λt + c2te
λt)v1 + c2e

λtv2, (46)

where v1 is given in (43) and v2 is given in (29), and c1 and c2 are arbitrary
constants.

A sketch of the phase portrait of the system in (40) is shown in Figure 6 on page
18. The sketch shows also the nullclines and the directions of the trajectories
on the nullclines. �

9. Let u and v be two nonnegative continuous functions defined on some open
interval J which contains to and that

u(t) 6M +

∫ t

to

v(τ)u(τ) dτ (47)
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for all t ∈ J and some nonnegative constant M . Show that

u(t) 6Me
∫ t
to
v(τ) dτ for all t ∈ J. (48)

(Suggestion: Let ϕ(t) = M +
∫ t
to
v(τ)u(τ) dτ and show that ϕ is a solution to

certain initial value problem for a linear first order equation.)

Solution: Let

ϕ(t) = M +

∫ t

to

v(τ)u(τ) dτ, for all t ∈ R. (49)

Thus, using the Fundamental Theorem of Calculus,

ϕ′(t) = v(t)u(t), for all t ∈ R. (50)

It also follows from (49) that
ϕ(to) = M. (51)

Now, use the assumption that u and v are nonnegative and the estimate in (47)
to obtain from (50) that

ϕ′(t) 6 v(t)

(
M +

∫ t

to

v(τ)u(τ) dτ

)
, for all t ∈ R,

which, in view of (49), can be rewritten as

ϕ′(t) 6 v(t)ϕ(t), for all t ∈ R. (52)

Next, rewrite the inequality in (52)

ϕ′(t)− v(t)ϕ(t) 6 0, for all t ∈ R,

and multiply by the integrating factor

µ(t) = e−
∫ t
to
v(τ) dτ , for all t ∈ R, (53)

to obtain that

µ(t)ϕ′(t)− v(t)µ(t)ϕ(t) 6 0, for all t ∈ R, (54)

where we have used the fact that µ(t) > 0 for all t.

Note that from (53) we obtain that

µ(to) = 1, (55)
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and, using the chain rule,

µ′(t) = −v(t)µ(t), for all t ∈ R. (56)

Next, substitute (56) into (54) to obtain the inequality

µ(t)ϕ′(t) + µ′(t)ϕ(t) 6 0, for all t ∈ R,

which we can rewrite as

d

dt
[µ(t)ϕ(t)] 6 0, for all t ∈ R, (57)

by virtue of the Product Rule.

Integrate on both sides of (57) with respect to t from to to t, and use the
Fundamental Theorem of Calculus to get that

µ(t)ϕ(t)− µ(to)ϕ(to) 6 0, for all t ∈ R,

or, in view of (51) and (55),

µ(t)ϕ(t)−M 6 0, for all t ∈ R,

or
µ(t)ϕ(t) 6M, for all t ∈ R. (58)

Divide both sides of the inequality in (56) and use (53) to get that

ϕ(t) 6Me
∫ t
to
v(τ) dτ , for all t ∈ R. (59)

Finally, use the assumption in (47) and the definition of ϕ in (49) to conclude
that

u(t) 6Me
∫ t
to
v(τ) dτ , for all t ∈ R,

which is the assertion in (48). �
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Figure 4: Sketch of Phase Portrait of System (22)
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Figure 5: Sketch of Phase Portrait of System (25)
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x´ = x-4y

y´ = 4x-7y
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Figure 6: Sketch of Phase Portrait of System (40)


