Review Problems for Exam 2

1. Compute the fundamental matrix for the system

$$
\left\{\begin{array}{l}
\dot{x}=-3 x-y \\
\dot{y}=4 x-3 y .
\end{array}\right.
$$

Give the general solution of the system and determine the nature of the stability of the equilibrium point $(0,0)$.
2. Compute the general solution of the system

$$
\binom{\dot{x}}{\dot{y}}=\left(\begin{array}{ll}
1 & -4 \\
4 & -7
\end{array}\right)\binom{x}{y},
$$

and describe the nature of the stability of its equilibrium point. Sketch the phase portrait.
3. Give the general solution of the system

$$
\left\{\begin{array}{l}
\dot{x}=2 x+y+1 ; \\
\dot{y}=x-2 y-1 .
\end{array}\right.
$$

Determine the nature of the stability of the equilibrium point of the system. Sketch the phase portrait.
4. Let A denote the 2×2 matrix, $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, where a, b and c are real numbers, and consider the linear system of differential equations

$$
\begin{equation*}
\binom{\dot{x}}{\dot{y}}=A\binom{x}{y} . \tag{1}
\end{equation*}
$$

Let $E_{A}(t)$, for $t \in \mathbb{R}$, denote the fundamental matrix of the system in (1).
(a) Put $W(t)=\operatorname{det}\left(E_{A}(t)\right)$, for all $t \in \mathbb{R}$. Verify that W solves the differential equation

$$
\begin{equation*}
\frac{d W}{d t}=\left(\lambda_{1}+\lambda_{2}\right) W, \quad \text { for all } t \in \mathbb{R} \tag{2}
\end{equation*}
$$

where λ_{1} and λ_{2} are the eigenvalues of A.
(b) Solve the differential equation in (2) to deduce that $W(t)=e^{\left(\lambda_{1}+\lambda_{2}\right) t}$, for all $t \in \mathbb{R}$. Deduce that the columns of $E_{A}(t)$ are linearly independent solutions of the system in (1).
5. Find two distinct solutions of the initial value problem

$$
\left\{\begin{array}{l}
\dot{x}=6 t x^{2 / 3} \\
x(0)=0
\end{array}\right.
$$

Why doesn't this violate the uniqueness assertion of the local existence and uniqueness theorem?
6. Consider the initial value problem $\left\{\begin{array}{l}\frac{d y}{d t}=y^{2}-y ; \\ y(0)=2\end{array}\right.$

Give the maximal interval of existence for the solution. Does the solution exist for all t ? If not, explain what prevents the solution from being extended further.
7. The motion of an object of mass m, attached to a spring of stiffness constant k, and moving along a horizontal flat surface is modeled by the second-order, linear differential equation

$$
\begin{equation*}
m \frac{d^{2} x}{d t^{2}}+\gamma \frac{d x}{d t}+k x=0 \tag{3}
\end{equation*}
$$

where $x=x(t)$ denotes the position of the object along its direction of motion, and γ is the coefficient of friction between the object and the surface.
(a) Express the equation in (3) as a system of first order linear differential equations:

$$
\begin{equation*}
\binom{\dot{x}}{\dot{y}}=A\binom{x}{y} . \tag{4}
\end{equation*}
$$

(b) For the matrix A in (4), let $\omega^{2}=\frac{k}{m}$ and $b=\frac{\gamma}{2 m}$.

Give the characteristic polynomial of the matrix A, and determine when the A has (i) two real and distinct eigenvalues; (ii) only one real eigenvalue; (iii) complex eigenvalues with nonzero imaginary part.
(c) Describe the behavior of solutions of (3) in case (iii) of part (b)
8. Let Ω denote an open interval of real numbers, and $f: \Omega \rightarrow \mathbb{R}$ denote a continuous function. Let $x_{p}: \Omega \rightarrow \mathbb{R}$ denote a particular solution of the nonhomogeneous, second-order equation

$$
\begin{equation*}
\frac{d^{2} x}{d t^{2}}+b \frac{d x}{d t}+c x=f(t), \quad \text { for } t \in \Omega \tag{5}
\end{equation*}
$$

where b and c are real constants.
(a) Let $x: \Omega \rightarrow \mathbb{R}$ denote any solution of (5) and put

$$
u(t)=x(t)-x_{p}(t), \quad \text { for } t \in \Omega
$$

Verify that u solves the homogeneous, second-order equation

$$
\begin{equation*}
\frac{d^{2} x}{d t^{2}}+b \frac{d x}{d t}+c x=0, \quad \text { for } t \in \Omega \tag{6}
\end{equation*}
$$

(b) Let $x_{1}: \Omega \rightarrow \mathbb{R}$ and $x_{2}: \Omega \rightarrow \mathbb{R}$ denote linearly independent solutions of the homogenous equation (6). Prove that any solution of the nonhomogeneous equation in (5) must be of the form

$$
x(t)=c_{1} x_{1}(t)+c_{2} x_{2}(t)+x_{p}(t), \quad \text { for all } t \in \Omega
$$

where c_{1} and c_{2} are constants.

