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Solutions to Review Problems for Exam 2

1. Compute the fundamental matrix for the system
T =—-3r —v;
{ y= 4dxr—3y (1)

Give the general solution of the system and determine the nature of the stability
of the equilibrium point (0, 0).

Solution: Write the system in vector form

where A is the matrix

The characteristic polynomial of A in (2) is
p,(N) =X\ +6X+ 13,
which can be written as
p,(A) = (N> +6A+9)+4,

or

PN =(A+3)7+4 (3)
It follows from (3) that the eigenvalues of A in (2) are

M=-3+2 and M=-3-2% (4)
We look for an invertible matrix () such that

QAQ =,

-(7 3 )

In order to do this, we first find an eigenvector w; € C? corresponding to \; in

(4). We get |
w=(3)

where
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Then, set
1 0
vy = Im(wy) = (0) and vy = Re(w) = (2) ,
and
10
so that

Q" = ((1) 1(/)2> ' (7)

The fundamental matrix, E, associated with J in (5) is

g4 [cos2t —sin2t
E, (t)=¢e (sin 9 cos Qt) , forallteR. (8)

Using (5), (6) and (8), we can compute the fundamental matrix corresponding
to A by using
E,(t)=QE,(tH)Q', foralltecR.

We get

g [ cos2t —%Sith
E, (t)=e <2sin2t oot ) for all ¢ € R,

is the fundamental matrix for the system in (1).

The general solution of the system in (1) is then

where c¢; and ¢y are arbitrary constants, or

z(t) cre~ cos 2t — e~ sin 2t

( ): 2 , forallteR,
2c1e 73t sin 2t + coe 3 cos 2t

where c¢; and ¢y are arbitrary constants.

Since the eigenvalues of A in (4) are complex with negative real part, (0,0) is a
spiral sink. O

2. Compute the general solution of the system

0-(1 0
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and describe the nature of the stability of its equilibrium point. Sketch the
phase portrait.

Solution: We first compute the fundamental matrix for the system in (9).

Set
A= (i :i) : (10)

The characteristic polynomial of A in (10) is
P, (A) =X +6A+09,
which we can write as
p,(N) = (A +3)%

Thus,
A=-3 (11)

is the only eigenvalue of the matrix A in (10).

Next, we find an eigenvector corresponding to A = —3, by solving the homoge-
neous system

(A= X)v=0, (12)
with A = —3. We get the vector
1

There is no basis for R? made up of eigenvectors of A; therefore, A is not
diagonalizable. We therefore need to find a solution, v, of the nonhomogeneous

system
(A= M)v =y, (14)

with A = —3. A solution of (14) is

vy = (1(/)4) . (15)

Set (Q = [Vl Vg], where v; and vy are given in (13) and (15), respectively; so
that,
(1 1/4
Q= (1 0) . (16)

J=Q AQ, (17)

Next, set
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where

Q' = <_2 D . (18)
It follows from (10), (17), (16) and (18) that

-3 1
() »
The fundamental matrix, £, (t), corresponding to the matrix J in (19) is given

by

67315 t€73t
E . (t) = ( 0 63t> , forallteR. (20)

The fundamental matrix corresponding to the matrix A in (10) is then given by
E,(t)=QFE,t)Q™", foralltecR,

where @, E,(t) and Q' are given in (16), (20) and (18), respectively. We
obtain

e 73t 4 4te=3 —4te 3t

The general solution of the system in (9) is given by

(%D = E,(1) (2) . forallt R,

for constants ¢; and ¢y, and where E, () is given in (21).

Since the only eigenvalue of A in (11) is negative, it follows that (0, 0) is asymp-
totically stable.

A sketch of the phase portrait of the system in (9) is shown in Figure 1. The
sketch also shows the nullclines of the system. ([l

3. Give the general solution of the system

(22)

T=2r+y+1;
y=x—2y—1

Determine the nature of the stability of the equilibrium point of the system.
Sketch the phase portrait.



Math 102. Rumbos Spring 2018 5

Solution: Write the system in matrix form
) =4 + : 23
(y) <y> <bz<t) )

2 1
A=(t ) o

(Z;Eg) = (_D , forallteR. (25)

Next, compute the fundamental matrix E,(t) associated with A. To do this,
we first compute the characteristic polynomial of A,

where

and

p,(A) =\ -5,
from which we get that

AM=—-v5 and A\ =5,

are the eigenvalues of A given in (24). Corresponding eigenvectors are

vy = (2 _1\/5) and vy = (2 +1\/5) . (26)
Thus, setting Q = [v; vg], where v; and vy are as given in (26); so that,
2—45 2445
o= (27 2V, (27)
we obtain that
1
2v5 2 5
Q' = , (28)
1 1 _ 1
25 2 V5
and V5
(VB0
QTAQ =J = ( 0 \/5) (29)

Thus, A is diagonalizable.
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The fundamental matrix associated with J given in (29) is

eVt 0
E, (t) = 0 VBt for all £ € R.

We can use this matrix to obtain the fundamental matrix associated with A,
E,(t) = QE,()Q™",

where Q and Q™! are given in (27) and (28), respectively, to obtain that E (¢)
is the matrix

1 1 1 1 1 1

—/5t V/5t —+/5t V/5t
——— e +{=-4+— ¢ ——e + ——e

1 1 1 1 1 1
—/5t V5t —+/5t V5t
——e + ——e¢ -+ — e +l=-——e€
2\/5 2\/5 <2 \/S) (2 \/S)
for t € R.

The general solution of the system in (23) is then given by

(Z%) = E,(t) (2) + B, (1) /0 t E,(-7) (Z;E:D dr, forteR, (30)

. . b
where ¢; and ¢y are arbitrary constants, and the vector—values function (bl)
2
is given in (25).

We evaluate the integral on the right-hand side of (30). First, we compute

B0 (310) = £ (1)

where F, (—7) is the matrix

1 1 11 1 1
s+ V5T st —/57 - NBT & /BT
(2 \/5) *(2*%)6 VARV
1 1 1 1 1 1
\/57' —\/57' \/g'r —\/57'
——=e¥ + ——e¢ —t+— e+ |z——F= e
i v ) ()
Consequently,
(1 ) i) o (1 . i) v
by (7) 2 25 2 2v5
E,(-7) (' =
' bo(7) 11N e (11
_ +_ e T+ - e— T
(2 NE) (2 2\/5)
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t
Next, we evaluate the integral / E, (—71) (bl (T)> dr to get
0 ba(7)

()= (o) e

(o))

which simplifies to

1 3\ & ( 1 3) a3
— —— eV - =+ — eV =
(2\/5 10) 2\/5 10 5

1 1 1 1 1

V5t —+/5t
—t— eV —=— = e V==
<2\/5 10) (2\/5 10) 5

To simplify the calculations, we use the hyperbolic trigonometric functions

for t € R.

cosh(u) = HTQ_. for u € R,
and Y
sinh(u) = €7 forueR
u
Using the definitions in (31) and (32) we have that
2 1
cosh(v/5t) + ——= sinh(v/5t — sinh(v/5¢
(Vi) 7 (Vi) 7 (V51)
E,(t) = ) , , (33)
— sinh(v/5t cosh(v/5t) — —= sinh(v/5t
7 (V1) (V5t) 7 (V1)
for t € R, and
1
— sinh(v/5t) — §cosh(\/ng) + 3
t bl (7_) \/5 5 5
/ E, (—71) dr = , (34)
0 ba(7) 1 1 1
NG sinh(v/5t) + B cosh(V/5t) — B

for t € R.

(31)

(32)
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Multiplying the vector in (34) above by E, () in (33) yields

§cosh(\/ng) + sinh(vV/5t) — 3
' bi(7) 5 g
g0 [ B0 () o= | 1 e
’ ~F cosh(v/5t) + 7 sinh(v/5t) + £

for t € R, where we have used the hyperbolic trigonometric identity
cosh?(u) — sinh?(u) = 1,

which can be derived using (31) and (32).
Consequently, combining (30), (35) and (33), we obtain the following expression

for (“; 8) in (30):

2 3 3
¢y cosh(v/5t) + Cl\/—% = sinh(v/5t) + R cosh(v/5t) + sinh(v/5t) — R
¢ 2 sinh(v/5t) + ¢, cosh(v/5t) — 1Cosh(\/gt) + L sinh(v/5t) + ! |
V5 ? 5 NG 5
for t € R,

To sketch the phase—portrait of the system in (22), we first determine the null-
clines:

2 = O-nullcline: 2r+y=—1

y = O-—nullcline: r—2y=1

These lines are sketched in Figure 2. The nullclines intersect at the equilibrium

point
1 3
T,y)=|—=,—= | . 36
w0 =(-5-1) (36)
Since the eigenvalues of A are
A =+V5,

(Z,7) is a saddle point for the system in (22). A sketch of the phase portrait of
the system in (22) is shown in Figure 2. O
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a b
d
and consider the linear system of differential equations

()-4()

Let E,(t), for t € R, denote the fundamental matrix of the system in (37).

4. Let A denote the 2 x 2 matrix, A = , where a, b and c are real numbers,

(a) Put W(t) =det(E,(t)), for all t € R. Verify that W solves the differential

equation

AW
=W, forallteR, (38)

where \; and A\, are the eigenvalues of A.
Solution: Write

_ (m(t) x2(h)
E, (t)= <y1(t) yz(t)> , forteR, (39)

where the vector—valued functions

() e () wreen

are solutions of the system in (37),

G=6) = GE)-0)

We then have that

2 (t) = azy (t) + by (t);
{y’l 0) = en(t) + (), IER (41)
and
wh(t) = axy(t) + bya(t);
{yé(t) = cay(t) + dys(t), fort € R. (42)

Now, since W (t) = det(E,(t)), for all t € R, it follows from (39) that
W(t) = x1(t)y2(t) — x2(t)ya(t), forallt € R. (43)
Differentiating on both sides of (43), and using the product rule, we obtain

W'(t) = 2y ()ya(t) + 21ty (1) — 25(0)1n (1) — 22(D)yr (1), for t € R;
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so that, using (41) and (42),

dW
E = (aml + byl)yg -+ 1'1(01’2 + dyg) — (axz + byg)yl — x2(0$1 + dyl);
so that,
dW
E = azr1Y2 + by1y2 + cr172 + dx1ys — axayr — byayn — cx172 — dxoyy,
or
dW
P = ax1y2 + dx1y2 — avayr — dxay;

= a(@1y2 — v2y1) + d(T1Y2 — T2tn);
hence, using (43),

aw
Y (a+d
L~ aw,
or a
- = trace(A)W. (44)
Thus, since trace(A) = A; + Ag, (38) follows from (44). O

Solve the differential equation in (38) to deduce that W (t) = et}
for all £ € R. Deduce that the columns of E,(t) are linearly independent
solutions of the system in (37).

Solution: 1t follows from (39), the definition of W and (40) that
W(0) =det(I) = 1.

Thus, according to the result of part (a), W is the solution of the IVP

aw
W(0) = 1.

The IVP (45) has a unique solution given by W (t) = e?1#22)t for all t € R.
It then follows that W (t) # 0 for all £ € R. Thus, the columns of E ()
are linearly independent. 0

5. Find two distinct solutions of the initial value problem

i = 6tx?/3;
z(0) = 0.
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Why doesn’t this violate the uniqueness assertion of the local existence and
uniqueness theorem?

Solution: Use separation of variables to show that the function
xi(t) =1 forallt €R,

solves the initial value problem (IVP) in (46).
Verify that the function

xo(t) =0, forallteR,

also solves the IVP in (46).
Thus, the IVP in (46) has at least two distinct solutions.
Observe that the function f: R? — R given by

flx,t) = 6tz*3,  for (z,t) € R?,

does not have a continuous partial derivative with respect to x at (0,0). Indeed,
for t # 0 and x # 0,

af 4t

or '
does not have a limit as (z,t) approaches (0,0). Hence, the local existence and
uniqueness theorem discussed in class does not apply to the IVP (46). U

6. Consider the initial value problem

W _ y: -
y(0) = 2.

Give the maximal interval of existence for the solution. Does the solution exist
for all ¢? If not, explain what prevents the solution from being extended further.

Solution: Use separation of variables and partial fractions to derive the solu-

tion 5
)= ———

Note that the denominator of the expression in (48) is 0 when ¢ = In(2). At that
time the solution of the IVP in (47) given in (48) ceases to exist. Hence, the

maximal interval of existence for the solution of the IVP in (47) is (—o0, In(2)).
O

for ¢t < In(2). (48)
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7. The motion of an object of mass m, attached to a spring of stiffness constant
k, and moving along a horizontal flat surface is modeled by the second—order,
linear differential equation

d?*z dx

where = z(t) denotes the position of the object along its direction of motion,
and v is the coefficient of friction between the object and the surface.

(a)

Express the equation in (49) as a system of first order linear differential

equations: .
()-4()

Solution: The matrix A in (50) is given by

A= (_kf’m _7}m> | (51)

For the matrix A in (50), let w* = k and b= -
m

2m’
Give the characteristic polynomial of the matrix A, and determine when
the A has (i) two real and distinct eigenvalues; (ii) only one real eigenvalue;

(iii) complex eigenvalues with nonzero imaginary part.

Solution: The matrix A in (51) can now be written as

A= (_32 _2117) | (52)

The characteristic polynomial of the matrix A in (52) is then
P, () = A% + 26X + WP
Thus, the eigenvalues of the matrix A in (52) are given by
A=—b+ Vi —w?

Thus, A has

(i) two real and distinct eigenvalues, if b > w;
(ii) only one real eigenvalue, if b = w;
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(iii) complex eigenvalues with nonzero imaginary part, if b < w.
U
(¢) Describe the behavior of solutions of (49) in case (iii) of part (b).

Solution: If b < w, the eigenvalues of A are complex with negative real
part. Hence, the solutions of the equation (49) will oscillate with decreasing
amplitude. O

8. Let Q) denote an open interval of real numbers, and f: {2 — R denote a contin-
uous function. Let z,: 2 — R denote a particular solution of the nonhomoge-
neous, second—order equation

d?x dx
e + ba +cx = f(t), forteq, (53)

where b and c are real constants.
(a) Let x: Q — R denote any solution of (53) and put
u(t) = x(t) — x,(t), forte Q.
Verify that u solves the homogeneous, second—order equation

d?z  dx
ﬁ—kba—kcazzo, for ¢t € Q. (54)

Solution: Let x: Q2 — R be a solution of (53). Then,
Z"(t) + ba'(t) + cx(t) = f(t), forte Q. (55)
Since we are assuming the z,: QR also solves (53), we also have that
xp(t) + b, (t) + coy(t) = f(t), forteQ. (56)

Put
u(t) = z(t) — x,(t), forte . (57)

Then, by properties of differentiation,
u'(t) =a'(t) —x,(t), forteq,

and

u'(t) = 2" (t) — ) (t

~—

, forteq.
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Thus, using (55), (56) and (57), we have that
u”(t) +bu'(t) +cu(t) = 2"(t) —xy(t) +b(2'(t) — 2, (1)) + c(x(t) — x,(t))
= 2(t) — @ () + ba' () — by (1) + ca(t) — cay (1)
— () + b () + ca(t) — (2(E) + b (£) + cay(t))
= ft) = 1),
for all t € Q; so that
u’(t) + bu'(t) + cu(t) =0, forallt € Q,

which shows that u solves the equation in (54). O

Let z1: © — R and z9: € — R denote linearly independent solutions of
the homogenous equation (54). Prove that any solution of the nonhomo-
geneous equation in (53) must be of the form

x(t) = crz1(t) + cowa(t) + x,(t), for all t €

where ¢; and ¢y are constants.

Solution: Since x; and x5 are linearly independent solutions of (54), any
solution of (54) is a linear combination of z; and xs by the results of
problem 4 in Assignment 11. We then have that

u(t) = 11 (t) + coxo(t), forall t € Q,
for u given in (57) in part (a) of this problem. Consequently,
x(t) — xp(t) = c121(t) + coxa(t), for all ¢t € €,
fromw which we get that
x(t) = c1z1(t) + cowa(t) + x,(t), for all t €

which was to be shown. O
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X =x-4y

y =4x -7y

Figure 1: Sketch of Phase Portrait for System (9)
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X'=2x+y+1
y'=x-2y-1

‘ ]
-2 -1.5
Cursor position: (-2.13,1.15) X
The backward orbit from (-0.2, -0.12) left the computation window.
Ready.

The forward orbit from (-0.046, 0.44) left the computation window.
The baclkward orbitfrom (-0.046, 0.44) left the computation window.
Ready.

Figure 2: Sketch of Phase Portrait for System (22)



